Assessment of the Infraorbital Nerve Function After Rigid Fixation of Zygomaticomaxillary Complex Fractures

Thesis

Submitted to the Faculty of Oral and Dental Medicine,

Cairo University in Partial Fulfillment of the Requirements for the

Master Degree in Oral and Maxillofacial Surgery

By

Ghada Abd El-Monim Mahmond B. D. S. (Cairo)

Faculty of Oral and Dental Medicine Cairo University

2010

Supervisors

Dr. Khaled Mohammed Allam

Professor of Oral and Maxillofacial Surgery

Faculty of Oral & Dental Medicine

Cairo University

Dr. Hamida Refai Hassnine

Professor of Oral and Maxillofacial Surgery

Faculty of Oral & Dental Medicine

Cairo University

Dr. Ann Ali Abd El-Kader

Professor of Neurophysiology
Faculty of Medicine
Cairo University

CONTENTS

	Page
Introduction	1
Review of Literature	2
Aim of the Study	43
Patients & Methods	44
Results	58
Discussion	80
Summary and Conclusions	87
References	89
Appendix	113
Araby Summary	

DEDICATION

To the Soul of my Father

To the one who gave me love, care and support

Who was by my side in each step in my life To my dear mother

To my husband and lovely kids

To my dear sisters

ACKNOWLEDGEMENTS

First to "Allah" Goes all my deepest gratitude and thanks for achieving any work in my life

Wards can't express my deepest gratitude and appreciation to my great **Professor**, **Dr. Galal Beheiri**, Professor of Oral and Maxillofacial Surgery, Faculty of Oral Dental Medicine, Cairo University, for his mastery teaching, generous help and support that helped me in this work.

Words are inadequate, they are only a symbol of my deepest gratitude and appreciation to my great Professor, Dr. Khaled Mohammed Allam, Professor of Oral and Maxillofacial Surgery, Cairo University for his generous help, support, his meticulous scientific supervision and valuable remanks during every step of this work.

My deepest thanks and gratitude to **Dr. Hamida Rafai Hassamine**, Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University, for her kind supervision encouragement and support. I am realy indebated and grateful to her for her generous help and sincere advice.

It is pleasure to express my deepest thanks and profound respect to **Dr.**Ann Ali Abd El-Kader Professor of Neurophysiology, Faculty of Medicine, Cairo University, for her kind supervision, support and humanity.

Last but not least, my deep appreciation to all my friends and colleagues of the Department of Oral Surgery and Clinical Neurophysiology Department, Cairo University, for their cooperation and encouragement.

Ghada Abd El-Moneim

LIST OF TABLES

Tables	Description	Page
1	Designation of buttress and beam segments	8
2	Clinical progression based on the degree of nerve injury	34
3	Associated mandibular fractures and their treatment	47
4	Demographic data of patients in group I	58
5	Demographic data of patients in group II	59
6	No. of patients, sex, age distribution and of associated	59
	fractures for both groups	
7	Fracture lines observed in all patients preoperatively	62
8	Distribution of numbness sensation over areas innervated	64
	by I.O.N in both groups	
9	Frequencies, percentages and results of McNemar's test for	66
	studying the changes by time in numbness sensation within	
	each group as regards lower eyelid	
10	Frequencies, percentages and results of McNemar's test for	66
	studying the changes by time in numbness sensation within	
	each group regarding lateral skin of the nose	
11	Frequencies, percentages and results of McNemar's test for	67
	studying the changes by time in numbness sensation within	
	each group regarding the upper lip	
12	Frequencies, percentages and results of chi-square test for	68
	comparison between subjective assessment in the two	
	groups	
13	Comparison between means, standered deviation values of	70
	the latency in the two groups	
14	Comparison between means, standered deviation values of	71
	the amplitude in two groups	
15	Changes by time of mean differences and standered	72
	deviation values of latencies in affected and normal sides	
	in group I	
16	Showing changes by time of mean differences and	73
	standered deviation values of amplitude in both sides in	
	group I	
17	Changes by time of mean differences and standered	74
	deviation values of latencies in both sides in group II	

18	Changes by time of mean differences and stander deviation	74
	75 values of amplitude in affected and normal side in group	
	II	
19	Comparison between mean % changes, stander deviation	75
	of latency of the two groups	
20	Comparison between mean % changes, standered deviation	7 6
	of amplitude of the two groups	
21	Means, standard deviation (SD) values and results of	77
	Mann-Whitney U test for comparison between latency in	
	cases with or without numbness sensation in group I	
22	Means, standard deviation (SD) values and results of	78
	Mann-Whitney U test for comparison between latency in	
	cases with or without numbness sensation in group II	

LIST OF FIGURES

Figures		Page
1	Drawing showing frontal and lateral views of the zygoma	2
	and its articulations	_
2	Drawing showing the quadripod nature of the zygoma.	2
	Note the four sutures, in particular the location of the	
	zygomaticosphenoid suture at the lateral orbital wall	
3	Schematic illustration of the fracture types	6
4	Designations of fractures according to horizontal beams	8
	(H) and vertical buttresses (V). (s) indicates superior, (i)	
	inferior	
5	Showing nerve Structure	34
6	Showing international 10-20 system for electrodes	38
	placement	
7	Showing radiographic assessment for ZMC fracture; A)	45
	Water's view B) Submento-vertex view C) CT axial cut	
	D) CT coronal cut	
8	Showing the subcillary approach	49
9	Showing A) Lateral eye brow incision exposing the ZF	50
	fracture. B) Maxillary vestibular approach; incision	
	through the mucosa, submucosa, facial musculature, and	
	periostium.	
10	Showing A) Displaced zygomatic buttress fracture. B &	51
	C) Reduction using Carroll-Gerard elevator and fixation	
	of zygomatic buttress fracture. D&E: Reduction and	
	fixation of displaced infraorbital fracture.	
11	Showing fixation of non-displaced infraorbital fracture as	53
	well as reconstruction of the orbital floor. C& D:	
	Reduction and fixation of displaced ZF fracture. E& F:	
	Fixation of non-displaced zygomatic buttress fracture	
12	Showing closure of the wounds	53
13	Showing trigeminal somatosensory evoked potentials unit	55
	Showing the recording electrode 2 cm posterior to C3 and	
14	C4	55
15	Showing references electrode at the forehead	55
16	Showing ground electrode around the neck	55
17	Showing electrode stimulator	55

18	An example for T.S.E.P; A) Showing amplitude in	56
	microvolts (µv). The horizontal lines mark from peak of	
	one polarity to immediately following peak of opposite	
	polarity. B) Showing latency in millisecond (ms) the	
	vertical lines marks from the point of stimulus onset to the	
	wave peak.	
19	Histogram showing gender distribution in the two groups	59
20	Postoperative photograph showing shortening in lower	60
	eyelid	
21	Histogram showing the preoperative clinical evaluation	61
22	Preoperative photograph showing edema & ecchemosis	61
	related to the fracture side	
23	Postoperative photograph showing resolution of the	61
	clinical symptoms	
24	Preoperative photograph showing edema & ecchemosis	61
	related to the fracture side	
25	Postoperative photograph showing resolution of the	61
	clinical symptoms	
26	Histogram showing sites of fracture	62
27	Preoperative CT scan showing fracture lines at the ZM	62
	suture	
28	Preoperative CT scan showing fracture lines at the	62
	A) infraorbital nerve B) Lateral orbital wall	
29	Postoperative CT scan showing fracture line after	63
	reduction with rigid miniplate	
30	3D CT showing reduction of the fracture lines with	63
	miniplates	
31	Histogram showing changes by time in numbness	67
	sensation within each group as regard lower eyelid, lateral	
	skin of the nose and upper lip	
32	Histogram showing comparison between subjective	68
	assessment in the two groups regarding lower eyelid	
	lateral skin of the nose and upper lip	
33	Showing the T.S.E.P latency measurements for patient No	69
	2 group I	
34	Histogram showing comparison between means, standard	70
	deviation values of the latency in the two groups	

35	Histogram showing comparison between means, standard deviation values of the amplitude in the two groups	71
36	Histogram showing Changes by time of mean differences and standard deviation values of latencies in both sides in group I	72
37	Histogram showing changes by time of mean differences	74
	and standard deviation values of latencies in both sides in group II	
38	Histogram showing Changes by time of mean differences and stander deviation values of amplitude in both groups	75
39	Histogram showing comparison between mean % changes, standard deviation of latency of the two groups	76
40	Histogram showing comparison between mean %	77
	changes, standard deviation of amplitude of the two groups.	
41	Histogram showing means, standard deviation (SD) values and results of Mann-Whitney U test for the comparison between latency in cases with or without numbness sensation in group I.	78
42	Histogram showing means, standard deviation (SD) values and results of Mann-Whitney U test for comparison between latency in cases with or without numbness sensation in group II.	79

LIST OF ABBREVIATION

3D Three dimentional

CBC Complete blood count

CM Centimeter

CT Computer tomography

EP Evoked potential

GA General anaesthesia

gm Gram

IM Intramascular

INR International normalized ratio

ION Infraorbital nerve

mA Milliampire

mg milligram

mm Millimeter

msec Millisecond

NO Number

ORIF Open reduction internal fixation

Pt Patient

PT Prothrombin time

PTT Partial prothrombin time

SD Standard deviation

Sec Second

SEP Somatosensory evoked potentials

TSEP Trigeminal somatosensory evoked potential

W Wave

ZF Zygomaticofrontal

ZM Zygomaticomaxillary

ZMC Zygomaticomaxillary complex

ZT Zygomaticotemporal

μ**v** Microvoltes

INTRODUCTION

The zygoma is considered the most critical bony structure in the lateral mid face, because of its anatomical shape and its critical position, that makes it highly susceptible to fracture⁽¹⁻³⁾ with sequela of acute sensory disturbance of sensory distribution of the infraorbital nerve (I.O.N) in the majority of patients of this type of fractures.^(1,2,4-13)

The reported incidence of posttraumatic sensory disturbance of (I.O.N) in ZMC fractures varies from 24-94% due to the close proximity of the nerve to the ZMC with higher incidence in displaced than non displaced fractures. (2,4,7,9,12-20)

Various methods have been used to evaluate the I.O.N function including patient questionnaire and highly sophisticated technology examination modalities. The purpose of these sensory assessment is to acquire information to render a clinical diagnosis, distinguish different degree of nerve injury, monitor sensory recovery, determine whether nerve micro-surgery is indicated or not, monitor sensory nerve recovery following micro-surgery and to help medico legal evaluation. (21-25)

Hence, the purpose of this study was to evaluate the efficacy of trigeminal somatosensory evoked potential (T.S.E.P) as an objective neurosensory test pre and post operatively after rigid fixation of the ZMC fractures.

REVIEW OF LITERATURE

ANATOMY OF THE ZYGOMA:

The zygoma is considered the most critical bony structure in the lateral midface. It represents the principal buttress between cranium and maxilla. It is a quadruped central body bone in shape from which four bony processes project articulating with the adjacent frontal, maxillary, temporal and the greater wing of the sphenoid bone through sutural function which are correspondingly named. That is why the zygomatico maxillary complex ZMC fractures has been also called "Tetrapod fractures" and "tripod fractures" are a misnomer (**Fig. 1, 2**). (1-4,26)

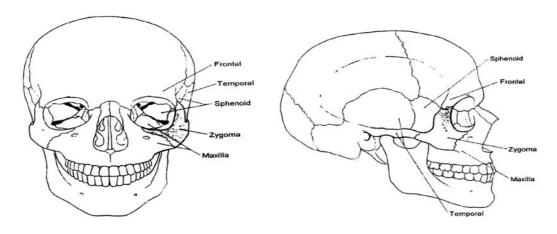


Fig. (1): Drawing showing frontal and lateral views of the zygoma and its articulations. $^{(26)}$

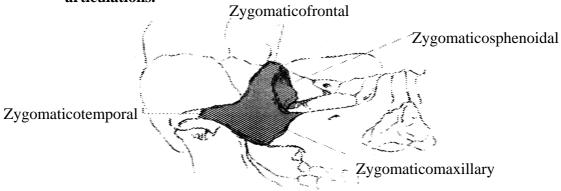


Fig. (2): Drawing showing the quadripod nature of the zygoma. Note the four sutures, in particular the location of the zygomaticosphenoid suture at the lateral orbital wall. (35)

The zygomatic bone itself usually does not fracture but separation of the suture lines or fracture of the adjacent bones occurs. The zygomaticofrontal (ZF), zygomaticotemporal (ZT)and zygomaticosphenoidal suture lines are considered the weakest sites of four articulation lines and usually they are involved in the (ZMC) fractures. Especially the ZT suture line which represents the articulation of temporal process of zygomatic bone with zygomatic process of temporal bone forming a thin delicate zygomatic arch which commonly fractures when subjected to minimal force. The zygomaticomaxillary (ZM) suture line is stronger and resist fracture; when the cheek receive a blow the force is transmitted from the solid maxillary process of zygoma to the weaker zygomatic process of the maxilla and lateral wall of maxillary sinus that cause their fractures. (2,3,26-28)

The zygomatic bone has an outer convex and inner concave surface. It's the place of origin to the major portion of the masseter muscle in its lower border and inner surface of zygomatic arch and also gives attachment for temporal and zygomatico minor and major muscles. (2,3) It plays a significant role in the formation of the bone framework of facial skeleton, temporal fossa, maxillary sinus, cheek contour and the orbit. (1-3,27,28)

INCIDENCE AND CAUSES OF ZMC FRACTURES:

ZMC fractures are one of the most common facial injuries secondary to the nose. The high incidence of this type of fractures is because of its prominent position in the facial skeleton. (2,14,29-31)

The main cause of ZMC fractures is road-traffic accidents including: motor vehicle accidents, motor cycle accidents and bike accidents because of high speed driving, insufficient stress on use of seat

belts or protective head guard, and ignoring traffic rules and regulations in 29.8 - 80% of all ZMC fracture patients. (32-34)

The remaining fractures (20.0%) were caused by falls (6.51 - 6.6%), physical assaults (4.3 - 5.0%), then sport related injuries and interpersonal violence (2.8 - 3.8%) commonly among males between 10-30 years, work accidents (1.8 - 2.2%) and Gunshots (1.08 - 1.4%). (30-38)

The highest incidence of ZMC fractures was found in the 3^{rd} decade of life 31-54% followed by the 4^{th} decade representing 27%, 15% of the patients were below 15 years old, while only 1-4% were between the 7^{th} and 8^{th} decade. (30-34,36)

The sex distribution ratio is observed higher for males 83-89% than females 11-17% (9:1) and this can be explained as males are more involved in violence and are considered the dominant patient population. (30,32-38)

The wide variation in the reported incidence and causes of ZMC fractures occur as a result of the variation in the related factors as environmental, geographical, cultural status, age and sex from patient to patient and from one country to another one. (31,32,39-41)

CLASSIFICATION OF ZMC FRACTURES:

Many classification schemes for ZMC fractures are suggested according to type of fracture, displacement of the fractured bone and the severity of the fracture. (6,42,43) These variability of classification schemes aim to identify, categorize and describe the anatomical points of the affected bones or position, and criteria of fracture are likely to be stable after selection of proper treatment. (2,4,6,2642)

Classification of ZMC fractures based on the anatomical points and fracture pattern into 3 types: