ASSESSMENT OF IDIOPATHIC GENERALIZED EPILEPSYCLINICAL ,EEG,AND MRS STUDIES

THESIS

Submitted in partial fulfillment of Requirement s for Medical Doctorate Degree in Neurology

BY

Dr.Dalia Mohammed Labib Abdel-Azim

M.B.,B.ch (Cairo University)

M.Sc. (Neuropsychiatry)

SUPERVISED BY

Prof. Dr. Mervat Mostafa

Professor of Neurology

Cairo University

Prof. Dr. Forayssa Talaat

Prof. Dr. Ihab Ismail Ali

Professor of Neurology

Professor of Radio-diagnosis

Cario University

Cairo University

Dr. Nevin Mohieldin Shalaby

Assistant Professor of Neurology

Cairo University

Faculty of medicine

Cairo University

2010

ABSTRACT

The determination of cognitive deficits as well as the use of advanced neuroimaging technique in epileptic patients is important especially in IGE because it reveals the possibility of seizures arise from focal brain pathology in what appear otherwise as generalized epilepsy syndromes.

Methods: Thirty IGE patients (10 with JME, 10 with GTC and 10 with CAE), and 10 healthy matched controls were submitted to a neuropsychological evaluation using a battery of psychometric tests for assessment of global intellectual functions, attention, memory, mental speed and information processing and to a single voxel MRS of Rt thalamus and prefrontal cortex measuring N-acetylaspartate (NAA) and NAA/creatine (Cr).

Results: Patients with IGE were found to perform worse than controls in all administered tasks with a significant correlation between the poor performance of the patients and the duration of the epilepsy or seizure frequency. A significant reduction of Rt thalamic and prefrontal cortex NAA and NAA/Cr ratio was observed in patients with IGE with a significant correlation between the change in neurometabolites of the patients and the seizure frequency. JME patients show significant reduction of NAA/Cr ratio in prefrontal cortex in comparison to other patients groups.

Discussion: This study shows evidence of impaired cognitive functions, in addition to neuronal dysfunction in the Rt thalamus and prefrontal cortex of patients with IGE, supporting the notion of abnormal thalamocortical circuitry as a substrate of seizure generation in this form of epilepsy. JME patients can show some frontal dysfunction, which may affect both epileptogenic features and cognitive processes.

KEY WORDS: Idiopathic generalized epilepsy, Cognition, Neuropsychology, Magnetic resonance spectroscopy, N-acetylaspartate, Thalamus, prefrontal cortex.

CONTENTS

List of abbreviations	II
List of tables	VI
List of figures	X
Introduction & aim of the work	
Review of literature:	
Chapter (1): epilepsy	3
Chapter (2): epilepsy and cognition	52
Chapter (3): Proton magnetic resonance	
spectroscopy (H ¹ –MRS)	77
Subjects and methods	88
Results	100
Case presentation	157
Discussion	178
Summary and conclusions	197
Recommondations	
Appendixes	
References	
Arabic summary	

LIST OF ABREVIATIONS

ADCME: Autosomal dominant cortical myoclonus and epilepsy

ADNFLE: Autosomal-dominant nocturnal frontal lobe epilepsy

AEDs: Antiepileptic drugs

ASE: Absence status epilepticus

BCECTS: Benign childhood epilepsy with centrotemporal spikes

BMEI: Benign myoclonic epilepsy in infancy

BNFCs: Benign neonatal familial convulsions

BNS: Benign neonatal seizures

BOLD: blood oxygenation level-dependent

CAE: Childhood absence epilepsy

CBC: Complete blood cells

CBZ: Carbamazepine

CHESS: chemical shift selective

Cho: Choline

CPT: Continuous Performance Test

Cr: Creatine

CSWS: continuous spike-and-wave during sleep

EEG: Electroencephalogram

EGMA: Epilepsy with generalized tonic-clonic seizures upon awakening

EGTCA: Epilepsy with generalized tonic-clonic seizures only

EM-AS: Epilepsy with myoclonic-astatic seizures

EME: Early myoclonic encephaloopathy

FAME: Benign adult familial myoclonic epilepsy

f MRI: Functional MRI

FS: Febrile seizures

FS +: Febrile seizures plus

GABA: Gamma-Aminobutyric acid

GEFS+: Generalized epilepsy with febrile seizures plus

Gln: Glutamine

Glu: Glutamate

GSWD: Generalized spike-wave discharges

GTCs: Generalized tonic-clonic seizure

HRBNT: Halstead-Reitan Battery of Neuropsychological Tests

HS: Hippocampal sclerosis

Hz: Hertz

IGEs: Idiopathic generalized epilepsies

ILAE: International League Agnist Epilepsy

IMT: incidental Memory Task

IPS: Intermittent photic stimulation

IQ: Intelligence Quotient

JAE: Juvenile absence epilepsy

JME: Juvenile myoclonic epilepsy

K-ARC: Kaufmanns Assessment Battery for children

LGS: Lennox-Gastaut syndrome

LKS: Landau-Kleffner

LTG: Lamotrigine

MAE: Epilepsy with myoclonic absences

MEG: Magnetoencephalography

MEI: myoclonic epilepsy of infancy

mI:Myo-inositol

MNCD: Mild Neuro Cognitive Disorder

MMSE: Mini-Mental state examination

MQ: Memory quotient

MRI: Magnetic resonance imaging

MRS: Magnetic resonance spectroscopy

MRSI: Magnetic resonance spectroscopic imaging

MSI: magnetic source imaging

MTLE: Mesial temporal lobe epilepsy

MTR: magnetization transfer ratio

NAA: N-acetylaspartate

NMDA: N-Methyl D-Aspartate

NRT: Nucleus reticularis of the thalamus

PASAT: Paced Auditory Serial Addition Test

PET: Positron emission tomography

PFC: Prefrontal cortex

PHT: Phenytoin

PIQ: Performance scale of IQ

PMA: Perioral myoclonia with absences

PME: Progressive myoclonic epilepsies

ppm: Parts per million

PRESS: Point resolved spectroscopy

PTZ: pentylenetetrazol

QOL: Quality of life

RAVLT: Rey Auditory Verbal Learning Test

RT: Reaction time

SD: Standard deviation

SNR: signal to-noise ratio

SPECT: Single photon emission computed tomography

STEAM: stimulated –echo acquisition mode

SWD: spike and wave discharges

TE: echo time

TLE: Temporal lobe epilepsy

TPM: Topiramate

TR: repetition time

VIQ: Verbal scale of IQ

VOI: Volume of interest

VPA: Valproate

WAIS-III: Wechsler Adult Intelligence scale- III

WIS: Wechsler Intelligence scale

WISC: Wechsler Intelligence scale for children

WMS-r: Revised Wechsler Memory Scale

LIST OF TABLES

Table (1): ILAE Classification of Epileptic Seizures	6
Table (2): Syndromic Classification Of ILAE	8
Table (3): Epileptic Syndromes by age of onset & Related Conditions	11
Table (4): Group classification of epileptic syndromes	
Table (5): An example of a classification of diseases frequently associated	
with epileptic seizures or syndromes	14
Table (6): Semiology Seizure Classification	17
Table (7): Distributed cognitive functions	52
Table (8): Localized cognitive functions	53
Table (9): Summary of Predominant Adverse Cognitive and	
Behavioral Effects	68
Table (10): Metabolites displayed in proton magnetic resonance spectroscop	ру
and their significance	
Table (11): The age distribution of IGE patients groups and control	
subjects	100
Table (12): The gender distribution of IGE patients groups and	
control subjects	101
Table (13): The positive family history in IGE patients groups and	
control subjects	101
Table (14): Educational level among patients groups and control subjects	102
Table (15): Age at seizure onset among patients	
groups	102
Table (16): Disease duration among patients groups	102
Table (17): Seizure frequency among patients groups	103
Table (18): The distribution of patients according to the type of AEDs	104
Table (19): The distribution of monotherapy patients according to	
the type and dose of AEDs	104
Table (20): The distribution of interictal and ictal discharges in	
patients groups	105
Table (21): Comparison between performance of IGE patients and	
controls as regards psychometric tests	107
Table (22): Comparison between performance of males and females	
IGE patients in psychometric tests	108
Table (23): Comparison between levels of education among IGE patients	
as regard psychometric tests	109

Table (24): Comparison between monotherapy and polytherapy
among IGE patients as regard psychometric tests
Table (25) Comparison between valproate, carbamazepine and
polytherapy among IGE patients regards psychometric tests
Table (26): Comparison between IGE patients with ictal discharges
and interictal discharges regards psychometric tests
Table (27): The correlation between epilepsy related factors and the
psychometric tests in IGE patients
Table (28): Correlation between educational level and psychometric
tests in IGE Patients
Table (29): Comparison between JME patients and control subjects
in psychometric tests results
Table (30): The correlation between the epilepsy related factors
and the psychometric tests in JME patients
Table (31): Comparison between GTC group and control subjects in
psychometric tests results
Table (32): The correlation between the epilepsy related factors and
the psychometric tests in GTC patients
Table (33): Comparison between CAE group and control subjects in
psychometric tests results
Table (34): The correlation between the epilepsy related factors and
the psychometric tests in CAE patients
Table (35): Comparison between JME, GTC and CAE regarding
psychometric tests
Table (36): Number and percentage of patients with abnormal
lower psychometric performance using a 2 SD cutoff
from the mean of normal controls
Table (37): MRS metabolites for IGE patients and control subjects
Table (38) Comparison between males and females patients
MRS metabolites
Table (39): Comparison between MRS metabolites of IGE patients
regarding levels of education134
Table (40): Comparison between monotherapy and polytherapy
among IGE patients regards MRS metabolites
Table (41): Comparison between valproate, carbamazepine and
polytherapy among patients regards MRS metabolites135
Table (42): Comparison between patients with normal interictal
discharges and abnormal interictal discharges regards

MRS metabolites	136
Table (43): The correlation between the age at seizure onset, seizure	
frequency and disease duration and the MRS results	
in IGE patients	138
Table (44): Correlation between educational level and MRS	
metabolites in IGE Patients	138
Table (45): The correlation between thalamic and prefrontal	
metabolites at TE (272) in IGE patients	139
Table (46): The correlation between thalamic and prefrontal	
metabolites at TE (31) in IGE patients	139
Table (47): Comparison between MRS results of JME group and	
control subjects	140
Table (48): The correlation between the age at seizure onset, seizure	
frequency and disease duration and the MRS results	
in JME patients	141
Table (49): The correlation between thalamic and prefrontal	
metabolites at TE (272) in JME patients	142
Table (50): The correlation between thalamic and prefrontal	
metabolites at TE (31) in JME patients	142
Table (51): Comparison between MRS results of GTC group and	
control subjects	143
Table (52): The correlation between the age at seizure onset, seizure	
frequency and disease duration and the MRS results	
in GTC patients	144
Table (53): The correlation between thalamic and prefrontal	
metabolites at TE (272) in GTC patients	145
Table (53): The correlation between thalamic and prefrontal metabolites	
at TE (272) in GTC patients	145
Table (55): Comparison between MRS results of CAE group	
and control subjects	146
Table (56): The correlation between the age at seizure onset, seizure	
frequency and disease duration and the MRS metabolites	
in CAE patients	147
Table (57): The correlation between thalamic and prefrontal	
metabolites at TE (272) in CAE patients	148
Table (58): The correlation between thalamic and prefrontal	
metabolites at TE (31) in CAE patients	148
Table (59): Comparison between JME, GTC and CAE regarding	
MRS metabolites	149

Table (60): Number and percentage of patients with abnormal lower	
MRS metabolites using a 2 SD cutoff from the mean	
of normal controls	150
Table (61): Correlation between MRS metabolites and Psychometric	
tests for IGE patients	153
Table(62): Correlation between MRS metabolites and Psychometric tests	
for all JME-Group	154
Table (63): Correlation between MRS metabolites and Psychometric	
tests for all GTC-Group	155
Table(64): Correlation between MRS metabolites and Psychometric tests	
for CAE Group	156

LIST OF FIGURES

Figure (1): Normal brain curve from proton MRS of the brain, showing	
peaks of metabolites	78
Figure (2): Differences on hydrogen proton spectroscopy graphs of	
normal patients, with long ET and short ET	99
Figure (3): The distribution of patients groups according to	
received medication	103
Figure (4): MRS metabolites for IGE patients and control	
subjects in prefrontal area& thalamus	131
Figure (5): MRS metabolites for patients groups and control	
subjects in prefrontal are	132
Figure (6): MRS metabolites for patients groups and control	
subjects in thalamus	132
Figure (7): Correlation between the age at seizure onset, seizure	
frequency and disease duration and prefrontal	
NAA/Cr at TE (31) in IGE patients	137
Figure (8) correlation between the age at seizure onset, seizure frequency	
and disease duration and thalamic NAA/Cr at TE (31)	
in IGE patients	137
Figure (9): MRS results for JME patients and control subjects in	
prefrontal area& thalamus	140
Figure (10): correlation between the age at seizure onset, seizure frequency	
and disease duration and prefrontal NAA/Cr at TE (31)	
in JME patients	142
Figure (11): MRS results for GTC patients and control subjects in prefrontal	
area& thalamus	143
Figure (12): correlation between the age at seizure onset, seizure frequency	
and disease duration and thalamic NAA/Cr at TE (31)	
in GTC patients	145
Figure (13): MRS results for CAE patients and control subjects in prefrontal	
area& thalamus	
Figure (14, 15) :MRI brain axial and coronal T_2 images &MRS at TE 31, 272	
on Rt thalamus in case no. 1	158
Figure (16, 17) MRI brain axial and coronal T ₂ images &MRS at	
TE 31, 272 on prefrontal cortex in case no.1	159
Figure (18, 19): MRI brain axial and coronal T ₂ images &MRS at TE 31, 272	

on Rt thalamus in case no. 2
TE 31, 272 on prefrontal cortex in case no.2
on Rt thalamus in case no. 3
TE 31, 272 on prefrontal cortex in case no.3
on Rt thalamus in case no. 4
TE 31, 272 on prefrontal cortex in case no.4
on Rt thalamus in case no. 5
TE 31, 272 on prefrontal cortex in case no.5
on Rt thalamus in case no. 6
TE 31, 272 on prefrontal cortex in case no.6
on Rt thalamus in case no. 7
TE 31, 272 on prefrontal cortex in case no.7

INTRODUCTION

Magnetic resonance spectroscopy (MRS) is the only non-invasive diagnostic MRI technique that distinguished various metabolites on the basis of their slightly different chemical shifts or resonance frequency within the body. Although MRI and MRS are based on similar fundamental principles, many important differences exist between these two techniques. The major difference is that MRI produces visual images where as MRS obtains chemical information that may be expressed as numerical values. The distinction between MRI and MRS has now been blurred by the development of magnetic resonance spectroscopic imaging (MRSI), which provides metabolic information in an imaging format (*Hammen et al.*, 2003).

The major clinical use of MRS is to study the brain metabolites. High resolution (1H-MRS) spectra showed N-acetylaspartate (NAA), Choline (Cho), Creatine (Cr), gamma-Aminobutyric acid (GABA) and Glutamate. Difference in spectra has been noted between gray and white matter and between different regions of the brain. Immunohistochemical studies have suggested that NAA is localized exclusively in neurons and their processes throughout the CNS (Moffett et al., 1991; Simmons et al., 1991; Urenjak et al., 1993).

Idiopathic generalized epilepsy (IGE) is characterized by the clinical triad of typical absences, tonic-clonic seizures and myoclonic jerks, with their onset in the first two decades. The neuroanatomical basis and the neurochemical abnormalities that underlay IGE are not fully defined that

means that the relationship between excitatory and inhibitory mechanisms in IGE remains uncertain (*Avoli et al.*, 2001; *Bernasconi et al.*, 2003).

Experimental work in animal models of generalized epilepsy and clinical data in human with idiopathic generalized epilepsy indicate that thalamo-cortical circuit is involved in the generation of epileptic activity. While it is generally accepted that thalamo-cortical loop is abnormal in idiopathic generalized epilepsy, it is uncertain whether this loop is similarly affected among different IGE syndromes (*Savic et al.*, 2004).

A negative correlation has been found between NAA/creatine and the duration of epilepsy, and a relation between frequent generalized tonic-clonic seizures and low thalamic NAA concentrations. This suggests progressive thalamic dysfunction in patients with IGE (Savic et al., 2000; Savic et al., 2004; Salmenpera and Duncan 2005).

AIM OF THE WORK

The aim of this study is to verify cognitive impairment in IGE patients, and to quantify the neurometabolites in two brain regions concerned with cognition; the thalamus and the prefrontal cortex, in a trial to find a possible link between neuronal dysfunction, evidenced by change in neurometabolites, and the presence of cognitive deficits in IGE patients, which may provide an objective basis to explain the prevalence of such cognitive impairment among epileptics. We also aim to correlate the findings with a number of epilepsy-related variables; as age at seizure onset, seizure frequency and duration of epilepsy.