

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

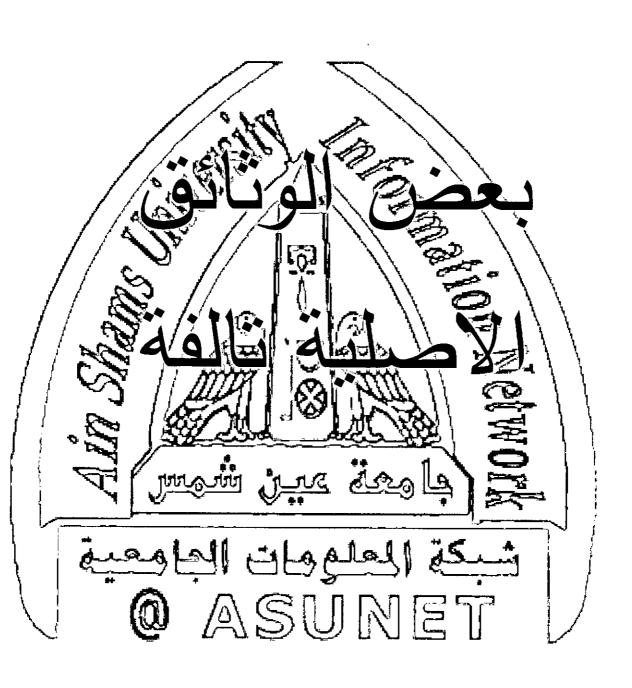
التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار


في درجة حرارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

Comparative studies between the characters of some races and hybrids of honeybee in Assiut region, Upper Egypt

By Mohamed Fath-Allah Abdel-Rahman

B.Sc. Agric. (Plant Protection), Assiut University (1992) M.Sc. Economic Entomology (Apiculture), Assiut University (1998)

THESIS

Submitted in Partial Fulfillment to the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In
Economic Entomology
(Apiculture)

Department of Plant Protection Faculty of Agriculture Assiut University

N P13>

2004

Supervised by:

Prof. Dr. Moustafa H. Hussein Prof. Dr. Mohamed Omar M. Omar

Prof. Dr. Saad M. Abo-Lila

Examined by:

Prof. Dr. Moustafa Hassan Hussein Prof. Dr. Mohamed El-Saeed Salem Prof. Dr. Mohamed Bahgat Shawer

Prof. Dr. Mohamed Omar M. Omar

APPROVAL SHEET

Title: Comparative studies between the characters of some races and hybrids of honeybee in

Assiut region, Upper Egypt.

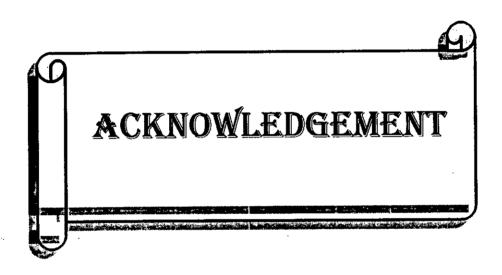
Name: Mohamed Fath-Alla Abdel-Rahman

This thesis for Ph.D. degree has been thoroughly examined and approved by:

Prof. Dr. -/// R S Lawre

Prof. Dr.

Prof. Dr.


.

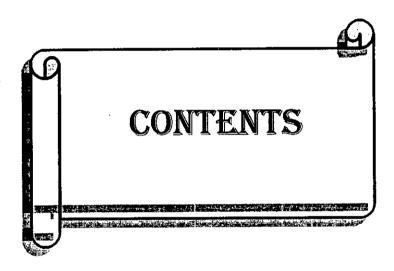
(Committee in charge)

Prof. Dr. - May 1- 1- June 2

Date: 28 /8/2004

ACKNOWLEDGMENT

First of all, I thank GOD.

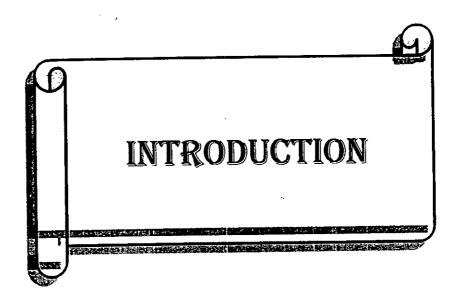

My deep thanks are due to *Prof. Dr. Moustafa Hassan Hussein*, Professor of Economic Entomology and Apiculture, Plant Protection Department of Agriculture, Assiut University, for his keen supervision, planning the work programme, invaluable, generous and scientific advice, cooperation, kind and sincere help, constructive guidance and careful criticisms when revising the manuscript.

Deep thanks also offered to *Prof. Dr. Mohammed O.M. Omar*, Professor of Economic Entomology and Apiculture, at the above Department, and *Prof. Dr. Saad M. Abo-Lila*, Bee Research Department, Plant Protection Research Institute, Ministry of Agriculture, for their valuable advices, encouragement and help during the work.

I am grateful to all staff members in the Plant Protection Department, Faculty of Agriculture, Assiut University.

Thanks are also to all the staff members of the Bee Research Department, Plant Protection Institute, Ministry of Agriculture.

Sincere thanks are due to Mr. Salah H. Rateb, Mr. Youssif M.M. Omar and Mr. Mohamed A. El-Khershi, Faculty of Agriculture, Assiut University, for helping me during this work.



CONTENTS

Subject	Page
Introduction	1
Review of Literature	3
Part I: Activities of Honeybee Colonies	3
A- Brood rearing and adult population	3
B- Rearing of drones	6
C- Queen rearing	8
D- Stored honey, honey production and honey-sac of	
workers	10
E- Stored pollen and weight of pollen loads	13
F- Bees wax secretion	17
Part II: Morphometrical Characteristics	19
A- Workers morphometrics	19
B- Drones morphometrics	25
C- Queens morphometrics	26
D- Egg size	29
Part III: Behavioural Defensive Assay	30
A- Hygienic behaviour of workers	30
B- Workers grooming behaviour	34
C- Aggressiveness of workers	36
D- Brood and adult infestation with varroa	40
Part IV: Physiological Conditions of Honeybee Workers and	
Queens	48
A- Elements, nitrogen content and development of	
hypopharyngeal glands of workers	48
B- Number of ovarioles in queens ovaries	5 S
Materials and Methods	58
Part I: Biometrical Techniques	58
A- Workers and drones brood rearing and adult population.	58
B- Queen cells production	59
C- Food stores (honey and pollen)	59
D- Weight of honey sacs and pollen loads	59
E- Bees wax secretion	59
Part II: Morphometrical Techniques	59
A- Workers morphometrical study	59
B- Drones morphometrical study	60
C- Queens morphometrical study	64
D- Egg size	64

Subject	Page
Part III: Behavioural Defensive Assay	65
A- Estimation of brood removal (hygienic, behaviour) of	
colonies against varroa	65
B- Estimation of grooming behaviour against varroa mite	
and infestation with varroa	65
C- Aggressiveness of workers	69
Part IV: Physiological Techniques	70
A- Determination of major elements, nitrogen and fat	
contents and development of hypopharyngeal glands of	
workers	70
B- Determination of number of ovarioles in queens	74
C- Meterological data	77
D- Statistical analysis	77
Results and Discussion	78
Part I: Biometrical results of tested races and hybrids	78
A- During 2000-2001:	78
B- During 2001-2002:	114
C- During 2002-2003:	160
D- General average of 2000-2003 seasons:	206
Part II: Morphometrical results of tested races and hybrids of	
honeybee colonies	213
A- During 2001-2002:	213
B- During 2002-2003:	224
C- General average of 2001-2003 seasons:	237
Part III: Results of behavioural defense of examined races and	
hybrids of honeybee colonies	254
A- Brood and adult infestation with varroa	254
B- Grooming behaviour against varroa	260
C- Hygienic behaviour against varroa mite	272
D- Aggressiveness of honeybee workers	276
Part IV: Physiological results	290
A- Major elements, fat and nitrogen contents in honeybee	
bodies	290
B- Development of worker hypopharyngeal glands	313
C- Ovarioles of virgin queens	323
D- General means of physiological results	327
Summary	336
Literature Cited	345
Arabic Summary	_

. .

INTRODUCTION

The domestic honeybee (Apis mellifera L.) has an original large area of distribution in Africa, Europe and in the Middle East. All the honeybee races from the different regions give fully fertile hybrids when crossed.

However, different types which develop, during evolution, in the different areas, separated from each other by geographical barriers, or by ecological conditions are the geographical races. For beekeepers, these races are very important, and their biological characters may be predicted to some extent. Generally, these races differ in their morphometrics, activities, behaviour and production.

The most known races are: the Carniolan race, Apis mellifera carnica Pollman, the Italian race, Apis mellifera ligustica Spinola, the Caucasian race, Apis mellifera caucasica Gorbatchow. In addition, the Egyptian race, Apis mellifera lamarckii Cockerelle, is found in Egypt, especially in Assiut region.

The geographical races can be discriminated by morphological differences, and biometric-statistic methods can be used for an exact analysis of their characters. Races of honeybee and their hybrids, where evaluated in different countries. Also, in Egypt, evaluation of honeybee races and their hybrids was conducted in some regions. However, in Upper Egypt, this evaluation of the Egyptian race, and their hybrids with Carniolan, Italian and Caucasian races, as compared with, the Carniolan race, was not previously studied.

A new scoring method was used for evaluation of different characters of studied races and hybrids, using of all studied biometrical,