### A Comparative Study of Nd:YAG Laser Versus Combined Sequential Delivery of Intense Pulsed Light and Nd:YAG for Treatment of Lower Extremity Talangiectasia and Reticular Veins

#### Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology, Venereology and Andrology

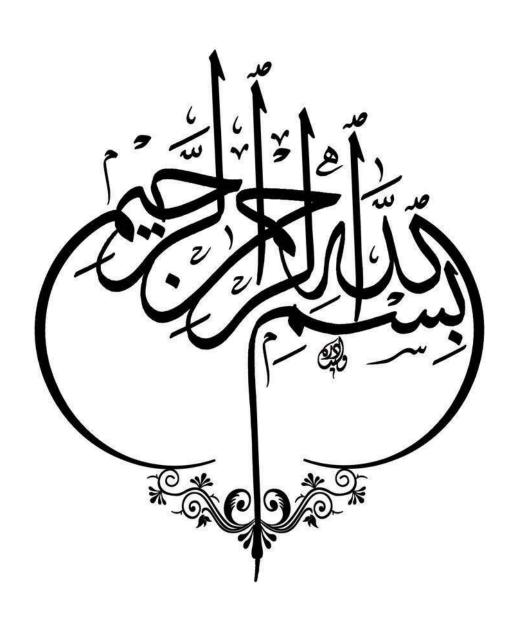
# By Dina AbdAllah Mohamed

M.B, B.Ch.
Faculty of Medicine – Ain shams University

Under Supervision of

### Prof. Dr. Sahar El-Sayed Ahmed

Professor of Dermatology, Venereology and Andrology Faculty of Medicine – Ain Shams University


#### Prof. Dr. Abeer Attia Tawfik

Professor of laser dermatology National Institute of Enhanced Laser Sciences – Cairo University

#### **Dr. Christine Kamal Thabet**

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University **2018**



# Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sahar &l-Sayed Ahmed,** Professor of Dermatology, Venereology and Andrology Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made it to complete this study.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Abeer Attia Tawfik**, Professor of Laser Dermatology National Institute of Enhanced Laser Sciences – Cairo University, for her continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Christine Kamal Thabet**, Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

Dina Abd Allah Mohamed

# List of Contents

| Title                                                                        | Page No. |
|------------------------------------------------------------------------------|----------|
|                                                                              |          |
| List of Abbreviations                                                        | 5        |
| List of Tables                                                               | i5       |
| List of Figures                                                              | 8        |
| Introduction                                                                 | 1        |
| Aim of Study                                                                 | 14       |
| Review of Literature                                                         |          |
| Telangiectasia and Reticular Veins                                           | 15       |
| ■ Intense Pulsed Light (IPL)                                                 | 24       |
| <ul> <li>Neodymium-doped Yttrium Aluminium Gar<br/>Laser (Nd:YAG)</li> </ul> |          |
| Patients and Methods                                                         | 45       |
| Results                                                                      | 55       |
| Discussion                                                                   | 84       |
| Conclusion & Recommendations                                                 | 89       |
| Summary                                                                      | 91       |
| References                                                                   | 94       |
| Arabic Summary                                                               |          |

### **List of Abbreviations**

#### Full term Abb. BPH ...... Benign prostatic hyperplasia CEAP ......Comprehensive Classification System for Chronic Venous Disorders DVT..... deep venous thrombosis GVHD ...... Graft Versus Host disease HIV ...... Human Immunodefiency Virus IPL ..... Intense Pulsed Light *IQR* ..... *Interquartile range* $J/Cm^2.....Joule/centimeter^2$ KTP..... Potassium titanyl phosphate LANAP..... Laser assisted new attachment protocol LASER.....Light amplification by stimulated emission of radiation Mm.....MillimeterMS..... Millisecond Nd:Yag......Neodymium-doped yttrium aluminum garnet laserNICE CG ...... National institute of health and care excellence clinical guidelines Nm ...... NanaometerQ-switched ....... Quanta switched SPSS...... Statistical Package for Social Science

## **List of Tables**

| Table No.                | Title P                                                                                                         | age No.      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
| Table (1):<br>Table (2): | Causes of telangiectasia and reticular v<br>CEAP classication for chronic ve-<br>disorders                      | nous         |
| <b>Table (3):</b>        | Comparison of sclerosing agents use telangiectasia treatment                                                    |              |
| <b>Table (4):</b>        | Lasers and light sources for the treatrof leg veins                                                             | 21           |
| <b>Table (5):</b>        | Description of age and disease dura among cases.                                                                | 55           |
| <b>Table (6):</b>        | Changes of hemoglobin variation regar Nd:YAG plus IPL treated side                                              | 56           |
| <b>Table (7):</b>        | Comparison between hemoglobin variable before and after treatment in NdYAG                                      | and          |
| <b>Table (8):</b>        | IPL treated side.  Changes of hemoglobin variation regar Nd:YAG treated side.                                   | ding         |
| <b>Table (9):</b>        | Comparison between hemoglobin variable before and after treatment in Nd:                                        | ation<br>YAG |
| Table (10):              | treated side                                                                                                    | e of<br>each |
| Table (11):              | Description of percent of change<br>hemoglobin variation due to treatmer<br>each of Nd:YAG and IPL treated side | in<br>nt in  |
| <b>Table (12):</b>       | Nd:YAG treated side.  Comparisons between two treatment regard percent of change in hemogl                      | s as         |
| <b>Table (13):</b>       | variation  Description of physician's assessment                                                                | 61           |
| 1 abic (10).             | patient satisfaction after treatment Nd:YAG plus IPL treated side                                               | t in         |

## **List of Tables cont...**

| Table No.          | Title Page                                                                                                                  | No.      |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|----------|
| Table (14):        | Description of physician's assessment and patient satisfaction after treatment in                                           |          |
| Table (15):        | Nd:YAG treated side.  Comparisons between two treatments as regard Physician's assessment and Patient satisfaction.         | ;        |
| <b>Table (16):</b> | Description of site of lesion among cases                                                                                   |          |
| Table (17):        | Comparison between above and below kneed cases as regard improvement in hemoglobing                                         | <b>;</b> |
| Table (18):        | variation in nd yag plus IPL group<br>Comparison between above and below knee<br>cases as regard Patient satisfaction in nd | ;        |
| <b>Table (19):</b> | yag plus IPL group                                                                                                          | 67       |
| 1 abie (19):       | Comparison between above and below kneed cases as regard Physican's assessment in Nd:YAG plus IPL group                     | L        |
| <b>Table (20):</b> | Comparison between above and below kneed cases as regard improvement in hemoglobin variation in Nd:YAG only group           | <b>;</b> |
| <b>Table (21):</b> |                                                                                                                             | ;        |
| <b>Table (22):</b> | Nd:YAG only group                                                                                                           | 68       |
|                    | cases as regard Patient satisfaction in Nd:YAG only group                                                                   |          |
| <b>Table (23):</b> | Description of adverse effects after treatment in Nd:YAG plus IPL treated side.                                             |          |
| <b>Table (24):</b> | Description of adverse effect after treatment in Nd:YAG treated side                                                        |          |
| <b>Table (25):</b> | Comparisons between two treatments as                                                                                       | 72       |

# **List of Figures**

| Fig. No.            | Title                                                                                                                                                                                          | Page No.                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Figure (1):         | Absorption spectra of hemoglobin oxyhemoglobin                                                                                                                                                 |                         |
| Figure (2):         | Clinical uses of intense pulsed according to filter used                                                                                                                                       | light                   |
| Figure (3):         | An 18-year-old man (A) by treatment and (B) 49 days after treatment of port wine stain, excellent response. Parameter setting 560 nm single pulse with pulse with 6 ms, fluence of 20–21 J/cm2 | efore one with tings:   |
| Figure (4):         | A 47-year-old Japanese man                                                                                                                                                                     |                         |
| Figure (5):         | A 54-year-old woman                                                                                                                                                                            |                         |
| Figure (6):         | A) Deep palmoplantar wart three after treatment. (B) After one week                                                                                                                            | days                    |
| Figure (7):         | After two weeks of Nd:YAG laser  a) Before and (b) 2 months after a treatments resulting in a climprovement of melasma using Nd laser                                                          | seven<br>inical<br>:YAG |
| Figure (8):         | Acne scarring (a) before treatmen<br>mild improvement after six treatm<br>by 1320 Nd:YAG                                                                                                       | t; (b)<br>nents         |
| Figure (9):         | Leg veins with mixed red and vessels                                                                                                                                                           |                         |
| Figure (10):        | A: Pretreatment close-up lateral photograph. B: Photograph obtained days after 6 monthly session treatment with Nd:YAG                                                                         | ed 10<br>s of           |
| <b>Figure</b> (11): | Onychomycosis with T. rubrum trowith four sessions of Nd-YAG laser                                                                                                                             |                         |
| Figure (12):        | Camera used in study Nikon D and lens used Nikon dx af-s nikko 55mm.                                                                                                                           | 05100<br>or 18-         |

# List of Figures cont...

| Fig. No.            | Title                                                                                                   | Page No.                 |
|---------------------|---------------------------------------------------------------------------------------------------------|--------------------------|
| Figure (13):        | Antera 3D Camera and image show leg telangiectasia using hemoglamode of the camera                      | lobin                    |
| <b>Figure</b> (14): | Cynosure Elite plus Aest<br>Workshop Device used in study                                               |                          |
| <b>Figure (15):</b> | Cynosure SmartCool Cryo-6 Ch<br>Laser Treatment Cooling System                                          | niller<br>used           |
| <b>Figure (16):</b> | along with Nd:Yag laser                                                                                 | Pulse                    |
| <b>Figure (17):</b> | Comaprison between Nd:YAG plus<br>versus Nd:YAG treated side as re<br>clinical improvement when assesse | IPL<br>gard              |
| Figure (18):        | treating physician.  Comparison between Nd:YAG plus versus Nd:YAG treated sides                         | 65<br>IPL                |
| Figure (19):        | regards patients' satisfaction                                                                          | IPL<br>gards<br>lema     |
| Figure (20):        | and purpura)                                                                                            | eated<br>L. (a)<br>after |
| Figure (21):        | Female Pt. (A) 18 years old treated w<br>sessions of Nd:YAG plus IPL.                                   |                          |
| Figure (22):        | Female Pt. (A) 18 years old trewith 3 sessions of Nd:YAG only                                           | eated                    |
| Figure (23):        | Female Pt. (A) 18 years old treated w<br>sessions of Nd:YAG only.                                       | rith 3                   |

# List of Figures cont...

| Fig. No.            | Title                                                                                                 | Page I                   | No. |
|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------|-----|
| Figure (24):        | Female Pt. (B) 42 years old trewith 3 sessions of Nd:YAG plus IPI before treatment and (b) treatment. | L. (a)<br>after          | 76  |
| <b>Figure (25):</b> | Female Pt. (B) 42 years old treated w sessions of Nd:YAG plus IPL                                     | vith 3                   |     |
| Figure (26):        | Female Pt. (B) 42 years old trewith 3 sessions of Nd:YAG only before treatment and (b) treatment.     | eated<br>r. (a)<br>after |     |
| Figure (27):        | Female Pt. (B) 42 years old treated w sessions of Nd:YAG only.                                        | vith 3                   |     |
| Figure (28):        | Female Pt. (C) 23 years old trewith 3 sessions of Nd:YAG plus IPI before treatment and (b) treatment. | eated<br>L. (a)<br>after |     |
| <b>Figure (29):</b> | Female Pt. (C) 23 years old treated w<br>sessions of Nd:YAG plus IPL.                                 | vith 3                   |     |
| Figure (30):        | Female Pt. (C) 23 years old trewith 3 sessions of Nd:YAG only before treatment and (b)                | eated<br>r. (a)<br>after |     |
| <b>Figure</b> (31): | Female Pt. (C) 23 years old treated w<br>sessions of Nd:YAG only                                      | vith 3                   |     |
| Figure (32):        | Female Pt. (D) 21 years old trewith 3 sessions of Nd:YAG plus IPI before treatment and (b) treatment. | eated<br>L. (a)<br>after |     |
| <b>Figure (33):</b> | Female Pt. (D) 21 years old treated w sessions of Nd:YAG plus IPL.                                    | vith 3                   |     |

# List of Figures cont...

| Fig. No.            | Title                                                                                      | Page No.                 |
|---------------------|--------------------------------------------------------------------------------------------|--------------------------|
| Figure (34):        | Female Pt. (D) 21 years old trewith 3 sessions of Nd:YAG only before treatment and (b)     | after                    |
| <b>Figure</b> (35): | Female Pt. (D) 21 years old treated w<br>sessions of Nd:YAG only                           | rith 3                   |
| Figure (36):        | Female Pt. (E) 36 years old trewith 3 sessions of Nd:YAG plus IPI before treatment and (b) | eated<br>L. (a)<br>after |
| <b>Figure</b> (37): | Female Pt. (E) 36 years old treated w<br>sessions of Nd:YAG plus IPL.                      | rith 3                   |
| Figure (38):        | Female Pt. (E) 36 years old trewith 3 sessions of Nd:YAG only before treatment and (b)     | eated<br>(a)             |
| <b>Figure (39):</b> | Female Pt. (E) 36 years old treated w                                                      | rith 3                   |
|                     | sessions of Nd:YAG only                                                                    | 83                       |

### Introduction

elangiectasia is a confluence of dilated intradermal venules less than 1 mm in caliber. Synonyms include spider veins, hyphen webs, and thread veins. They represent dilatations of preexisting vessels without any new vessel growth. The color of the telangiectasia depends on the caliber of the dilated venule. Large dilatations (up to 1 mm) are dark blue in color; the smallest (0.1 mm) are very superficial and are red in color. They do not empty on limb elevation It is suggested that the difference in the color of the telangiectasia results from difference in the oxygenation in capillary loops. The red ones represent dilatation from the arterial and the blue from the venous loop of the capillary (Mortimer et al., 2010).

Reticular veins are dilated bluish subdermal tortuous veins of 1-4 mm in diameter. Most of the patients are women and are asymptomatic. Majority seek medical attention for cosmetic reasons. However, some women have symptoms of lower extremity throbbing pain and aches, worse during menstrual periods. The throbbing pain is aggravated by prolonged standing and sitting and relieved by elevation and compression stockings. It is surprising that the severity of symptoms is totally out of proportion to the size of the involved veins (*Vaidyanathan*, 2015).

Laser is one of the fast growing fields directly affecting dermatology. Laser therapy has offered effective and non-



scarring treatment modalities to patients with vascular lesions including telangiectasia. In vascular lesions the targeted chromophore is oxyhemoglobin and deoxyhemoglobin (Haiguang et al., 2017).

Long-pulsed neodymium-doped yttrium aluminum garnet laser (Nd:YAG) is used in many dermatological diseases. In vascular lesions the laser's chromophore is the oxyhemoglobin and deoxyhemoglobin. The laser's beam is poorly absorbed in water and absorbed by hemoglobin. Due to its poor absorption in water, the laser penetrates deeply into the tissue. As it passes through tissues, the laser beam emits heat and thus affects tissue down to the depth of about 7-10 mm, a process called selective photothermolysis. Its selective absorption by hemoglobin results in selective photocoagulation within the blood vessels making it a perfect choice for treating vascular lesions including telangiectasia (John et al., 2016).

Intense Pulsed Light (IPL) devices are not lasers but rather contain a powerful flash lamp that produces noncoherent, polychromatic light that can be tuned to provide a variety of wavelengths, fluences, and pulse durations. One of the major advantages of IPL is its absorption by both oxygenated and deoxygenated hemoglobin, its ability to penetrate deep into the tissues and its relatively large head size causing minimal purpura (Sadick and Sorhaindo, 2014).

### **AIM OF STUDY**

The aim of current work is to compare the effectiveness of Nd:YAG versus combined sequential IPL and Nd:YAG in treatment of lower limb telangiectasia and reticular veins.

#### Chapter 1

# TELANGIECTASIA AND RETICULAR VEINS

#### I- Definition of telangiectasia:

alngiectasia is an abnormal dilation of preexisting intradermal vessels less than 1 mm in diameter without the growth of new vessels. They are also known as spider veins or thread veins. Reticular veins are dilated bluish subdermal tortuous veins of 1-4 mm in diameter (*Vaidyanathan*, 2015).

#### **II- Clinical Presentation:**

Telangiectasia and reticular veins are often a source of significant distress to the patient whether or not symptoms are present. They are more common in women than in men. Majority seek medical advice for cosmetic reasons. A minority of patients complain of throbbing pain worse after prolonged standing and during menstrual period and relieved by elevation (Al Meida and Raines, 2009).

Their color vary between red and blue, the large deeper ones tend to be blue in color and the superficial smaller one tend to be red in color. They may occur at any site in the body but more in the face and lower limbs. The treatment of the ones located in lower limbs is more challenging than that of other sites as they are located deeper, usually larger in diameter and under more hydrostatic pressure (*Parlar et al.*, 2014).