EFFECT OF NATURAL ZEOLITE AND BENTONITE MINERALS ON SOME SANDY SOIL CHARACTERISTICS

By MANAL HASSAN MOHAMED IBRAHIM EL-MAHDY

B.Sc. Agric. Sc. (Soil Science), Ain Shams University, 2001

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

2010

Approval Sheet

EFFECT OF NATURAL ZEOLITE AND BENTONITE MINERALS ON SOME SANDY SOIL CHARACTERISTICS

By MANAL HASSAN MOHAMED IBRAHIM EL-MAHDY

B.Sc. Agric. Sc. (Soil science), Ain Shams University, 2001

This thesis for M. Sc. degree has been approved by:
Dr. Ahmed Abdel-Kader Taha
Prof. of Soil Science, Faculty of Agriculture, Mansoura University
Dr. Abdel-Samed Sallem Ismael
Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Sham
University
Dr. Abdel-Aziz Saad Sheta
Prof. of Soil Science, Faculty of Agriculture, Ain Shams University
Dr. Farida Hamed Rabie
Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Sham
University

Date of Examination: 24 / 10 / 2010

EFFECT OF NATURAL ZEOLITE AND BENTONITE MINERALS ON SOME SANDY SOIL CHARACTERISTICS

By MANAL HASSAN MOHAMED IBRAHIM EL-MAHDY

B.Sc. Agric. Sc. (Soil science), Ain Shams University, 2001

Under the supervision of:

Dr. Farida Hamed Rabie

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Abdel -Aziz Saad Sheta

Prof. of Soil Science, Department of soil Science, Faculty of Agriculture, Ain Shams University

Dr. Mohammed Saifeldeen Abd- El Wahed

Assistant Prof. of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Manal Hassan Mohamed Ibrahim El-Mahdy: Effect of Natural Zeolite and Bentonite Minerals on Some Sandy Soil Characteristics. Unpublished M.Sc. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2010.

One of the ways to improve sandy soils is the addition of natural inorganic deposits rich in clay minerals. The present study was carried out to investigate the effect of using natural clay minerals, (zeolite and bentonite rich deposits) for improving the availability of some nutrients (K, Zn, Mn and Fe) nutrient. Several analyses were carried out on the collected deposits and the studied soil to find out their physical, chemical and mineralogical properties.

Bentonite and zeolite samples were saturated with micronutrients from sulfate salts Zn, Mn, Fe and K using K₂SO₄ solution. Incubation experiment was carried out using a mixture of sandy soil and different rates of the nutrient saturated or unsaturated minerals. Wetting and drying cycles were followed under laboratory condition and the amount of lost water was monitored and calculated. After the incubation period (30 days) maize (Trihybrid 311) was planted in the pots, at the same time soil sample was taken for available nutrent analysis.

Results indicated that saturation of zeolite and bentonite with K, Zn, Mn and Fe increased the available levels of these nutrients. Rusults also revealed that treating sandy soil with zeolite or bentonite increased the levels of these nutrients when compared with untreated soil. The increase in the nutrient levels was higher in case of bentonite compared with zeolite

Results of pot experiment indicated that there was a beneficial effect for the application of natural clay mineral amendments, zeolite and bentonite. The contents of the studied nutrients ,K, Zn, Mn, and Fe were increased under the conditions of the experiment. Concentrations of th of the studied minerals, in maize plants were affected by clay mineral type and different application rate of the fortified clay minerals .

These results may be of good potential for improving the available level of K, Zn, Mn, and Fe in sandy soils and bentonite was more efficient than zeolite in that regards.

Keywords:

sandy soil, zeolite, bentonite, maize plants, saturated zeolite, saturated bentonite.

ACKNOWLEDGMENT

The authoress wishes to express her sincere thanks and gratitude to **Prof. Dr. Farida Hamed Rabie**, the Professor Emeritus of Pedology, Soil Science Department, Faculty of Agriculture, Ain shams University, for her support and introducing all facilities needed through the whole investigation, her scientific contribution, and writing this manuscript.

The authoress deeply wishes also to express her gratefulness and thanks to **Prof. Dr. Abd El- Aziz Saad Sheta,** Professor of Pedology, Soil Science Department, Faculty of Agriculture, Ain shams University for his support and endless help throughout the whole investigation.

The authoress wishes also to express her thanks to **Dr. Mohammed Saifeldeen Abd- El Wahed**, Assistant Prof. of Soil Science Faculty of Agriculture, Ain shams University for his encouragement and help

Thanks are due to the staff members of Soil Science Department, Faculty of Agriculture, Ain Shams University, for their help throughout the time of this work. My thanks are extended to all my friends and colleagues who helped me in some way or another.

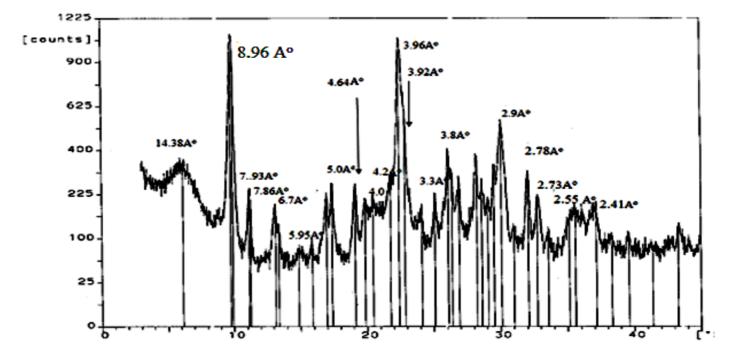
I wish to express my sincere thanks to my family for their strong support during my studies.

CONTENTES

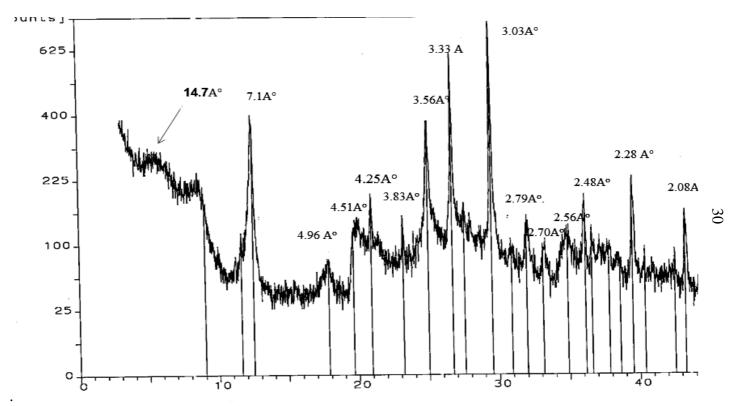
LIST OF TABLES	III
LIST OF FIGURES	VI
1-INTRODUCTION	1
2-REVIEW OF LITERATURE	3
2.1. Bentonite in sandy soil reclamation.	5
2.2. Zeolite minerals in sandy soil reclamation.	9
3-MATERIALS AND METHODS	17
3.1. Natural bentonite and zeolite samples:	17
3.2. Methods of Analysis:	17
3.3. Soil sample:	19
3.4. Incubation experiment:	21
3.4.1. Preparation of nutrients saturated zeolite and bentonite cla	ays
	21
3.4.2. Preparation of soil: minerals mixture for incubation	
experiment:	21
3.4.3. Steps carried out in incubation experiment:	22
3.4.4. Pot experiment:	23
3.5. Statistical analysis:	23
4-RUSULTS AND DISSCUSION	24
4.1. Natural bentonite and zeolite samples	24
4.2. General characteristics of the studied soil and minerals:	38
4.2.1. Soil sample:	38
4.2.2. Zeolite Mineral:	38
4.2.3. bentonite sample :	39
4.3.1. Effect of nutrient saturated zeolite and bentonite on nutrie	ents`
levels in treated sandy soil	41
4.3.2. Incubation experiment:	42
4.3.3. Nutrient availability after 30 days of Incubation period:	45
4.3.3.1. Potassium availability	45

4.3.3.2. Zinc availability:	48
4.3.3.3. Mn availability:	51
4.3.3.4. Iron Availability:	54
4.4. Pot experiment	57
4.3.3.3. Mn availability: 4.3.3.4. Iron Availability: 4.4. Pot experiment 5-SUMMARY 5- REFERENCES	69
6- REFERENCES	
ARABIC SUMMARY	

LIST OF TABELES


1	Representative unit-cell formulae and selected physical and chemical properties of some zeolite clay minerals .	12
2	Some physical and chemical properties of the studied soil.	20
3	Some physical and chemical properties of the studied zeolite	39
4	Some physical and chemical properties of the studied bentonite	41
5	Available K, Zn, Mn, and Fe (ppm) in nutrient saturated zeolite and bentonite .	42
6	Total amount of added water during the incubation period (ml per pot during 30 days).	44
7	Amount of available K (mg/kg soil) extracted by $1\underline{N}$ NH ₄ OAc from different treatments after incubation period .	46
8	Amount of available Zn (mg/kg soil) extracted by DTPA from different treatments after 30 days of incubation period	49
9	Amount of available Mn (mg/kg soil) extracted by DTPA from different treatments after 30 days of incubation period.	52
10	Amount of available Fe (mg/kg soil) extracted by DTPA from different treatments after 30 days of incubation period.	55
11	Potassium concentration (g/100g dry weight) in maize tissue.	58
12	Zinc Concentration (mg kg ⁻¹ dry weight) in maize plants.	61
13	Manganese concentration (mg kg ⁻¹ dry weight) in maize plants.	64
14	Iron Concentration (mg kg ⁻¹ dry weight) in maize plants	67

LIST OF FIGURES


1	X-ray diffraction pattern of zeolite sample (powder mounting)	29
2	X-ray diffraction pattern of bentonite sample 1	30
	(Mg- saturated air dried treatment- Oriented mounting).	
3	X-ray diffraction pattern of bentonite sample 2	31
	(Mg- saturated air dried treatment- Oriented mounting).	
4	X-ray diffraction pattern of bentonite sample 3	32
	(Mg- saturated air dried treatment- Oriented mounting).	
5	X-ray diffraction pattern of bentonite sample 4	33
	(Mg- saturated air dried treatment- Oriented mounting).	
6	X-ray diffraction pattern of bentonite sample 5	34
	(Mg- saturated air dried treatment- Oriented mounting).	
7	X-ray diffraction pattern of bentonite sample 6	35
	(Mg- saturated air dried treatment- Oriented mounting).	
8	X-ray diffraction pattern of bentonite sample 7	36
	(Mg- saturated air dried treatment- Oriented mounting).	
9	X-ray diffraction pattern of bentonite sample 7 after glycolation	37
10	Amount of available K (mg/kg soil) extracted from different	47
	treatments after 30 days of incubation period	
11	Amount of available Zn (mg/kg soil) extracted from different	50
	treatments after 30 days of incubation period	
12	Amount of available Mn (mg/kg soil) extracted from different	53
	treatments after 30 days of incubation period	
13	Amount of available Fe (mg/kg soil) extracted from different	56
	treatments after 30 days of incubation period.	
14	Concentrations of potassium (mg 100g ⁻¹) in maize plants tissue	59
	as affected by clay mineral type and application rates	
15	Concentrations of Zn (mg kg ⁻¹) in maize plants tissue as affected	62
	by clay mineral type and application rates.	

16	Concentrations of Mn (mg kg ⁻¹) in maize plants tissue as	65
	affected by clay mineral type and application rates.	

17 Concentrations of Fe (mg kg⁻¹) in maize plants tissue as affected 68 by clay mineral type and application rates.

Fig (1): X-ray diffraction pattern of zeolite sample (powder mounting)

Fig (2): X-ray diffraction pattern of bentonite sample 1(Mg- saturated air dried treatment- Oriented mounting).

