MEASUREMENT OF AORTIC FLOW IN RESPONSE TO FLUID USING ESOPHAGEAL DOPPLER AND MONOCYTE CD 86 EXPRESSION AS PROGNOSTIC MARKERS OF POST-INFLAMMATORY IMMUNODEFICIENCY IN CRITICALLY ILL PATIENTS

Thesis Submitted in Partial Fulfillment for M.D. Degree In Critical Care Medicine

By
Mohammed Abd El-Monem Saeed Ahmed
MB. B. CH,
Master Degree in Critical Care Medicine

Under Supervision of

Prof. Dr. Fahim Abd El Azeem Ragab

Professor Of Critical Care Medicine Faculty of Medicine - Cairo University

Prof. Dr. Azza Mahmoud Kamel

Professor of Clinical Pathology National Cancer Institute - Cairo University

Dr. Mohamed Mohamed Youssef Khaled

Lecturer of Critical Care Medicine Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University 2010

First of all praise and thanks to **ALLAH** providing me with time and effort to accomplish this thesis.

I wish to express my deep gratitude to Prof. Dr. Fahim Abdel Azeem Ragab, Professor of Critical Care Medicine, Cairo University for his enthusiasm, keen supervision, continuous encouragement and meticulous guidance and follow up throughout this work.

I am greatly indebted to Prof. Dr. Azza Mahmoud Kamel Head of Clinical pathology Department National Cancer Institute, Cairo University for her sincere contribution in this work with her time and effort.

A special tribute and cordial thanks are paired to Dr. Mohamed Mohamed Youssef Khaled, Lecturer of Critical Care Medicine, Cairo University for his authentic guidance, meticulous supervision. He gave me a lot of his time, effort and experience to accomplish this work.

I am greatly also indebted to Prof. Dr. Nahla El-Sharkawy, Professor of Clinical Pathology National Cancer Institute Cairo University for her sincere contribution in this work with her time and effort.

A special tribute and cordial thanks are paired to Dr. Mohamed Ibrahim Afifi, Lecturer of Critical Care Medicine, Cairo University for his contribution in finishing the practical part of esophageal Doppler monitoring.

A special thank to Prof. Dr. M. Sherif Mokhtar, Professor of Critical Care Medicine, Cairo University for his valuable advice and guidance.

I would like to express my deep gratitude to my Prof. Dr. Alia Abd El Fattah, Professor of Critical Care Medicine, Cairo University for her keen, continuous encouragement and giving the chance for this work to see the light.

I would like to express my deep gratitude to my Prof. Dr. Ahmed Ghali, Professor of Critical Care Medicine, Ain Shams University for continuous support and encouragement through all my practical work and clinical practice.

I would like to express my deep gratitude to my Prof. Dr. Hussain Khaled, Professor of Medical Oncology, National Cancer Institute, Cairo University and Vice President of Cairo University for Graduate Studies, for his continuous support and encouragement throughout this work.

Finally, but of major importance is my Mother, My wife, My Sister, My Daughters, my Father in law, my Mother in law and my Friends for their great support, encouragement and forbearance during my work.

Mohammed Abd El Monem Saeed

2010

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of The Work	4
Review of Literature	
Definition & Diagnosis Of Sepsis	5
MODS & Scoring Systems	46
Esophageal Doppler Monitoring A Minimally Invasive Procedure	62
Patients and Methods	80
Results	101
Discussion	141
Summary	152
Conclusion and Recommendation	154
Reference	156
Arabic Summary	

LIST OF TABLES

Tab. No	Title	Page No.
Table (1):	The SOFA score	
Table (2):	Vasopressor in sepsis	
Table (3):	Showing SOFA scoring	
Table (4):	Correlation Data:	
Table (5):	Esophageal Doppler Monitor Parameters	72
Table (6):	Fluorescence spectra of commonly used	
	fluorochromes.	
Table (7):	Comparison between survivors and non-survivors	
	critically ill patients as regards age.	102
Table (8):	Comparison between survivors and non-survivors	
	critically ill patients as regards gender.	103
Table (9):	Hemodynamics and vital signs in 7 survivors and 13	
	non survivors critically ill patients	104
Table (10):	Laboratory parameters in 7 survivors and 13 non	
	survivors critically ill patients.	105
Table (11):	Arterial blood gases in 7 survivors and 13 non	
	survivors critically ill patients 107	
Table (12):	Blood culture results in 7 survivors and 13 non	
	survivors critically ill patients	108
Table (13a):	Sputum culture results in 7 survivors and 13 non	
	survivors critically ill patients.	109
Table (14):	Urine culture results in 7 survivors and 13 non	
	survivors critically ill patients	110
Table (15):	Monocyte CD86 percentage expression mean	
	fluorescent ratio and relative intensity in 7 survivors	
	and 13 non survivors critically ill patients at different	444
T 11 (16)	time results	111
Table (16):	Comparison of change in CD86 level between 7	110
T-11. (17).	survivors and 13 non survivors critically ill patients	113
Table (17):	Aortic blood flow results in 7 survivors and 13 non	102
Table (19).	survivors critically ill patients	123
Table (18):		124
Table (19):	survivors critically ill patients after fluid challenge	124
1 able (19).	Daily SOFA score results in 7 survivors and 13 non survivors critically ill patients	126
Table (20):	Relation between CD86 relative intensity on peripheral	120
1 abic (20).	blood monocytes in day 1 aortic blood flow and SOFA	
	score	128
Table (21):	Relation between CD86 relative intensity on peripheral	120
1 abic (21).	blood monocytes in day 4, aortic blood flow and SOFA	
	score	120
Table (22):	Peripheral blood monocyte relative CD86 intensity in 7	129
1 abic (22).	survivors and 13 non survivors critically ill patients in	
	relation to blood culture results	130
	TELEVIOR TO CICCO CORRECT LONGITO	

LIST OF TABLES (Cont...)

Tab. No	Title	Page No.
Table (23):	Aortic blood flow in 7 survivors and 13 non survivors critically ill patients in relation to blood culture results.	131
Table (24):	Sputum culture results in 7 survivors and 13 non survivors critically ill patients in relation to CD86 expression on peripheral blood monocytes by relative	
Table (25):	intensity	133
1 able (23).	survivors critically ill patients in relation to aortic blood flow after fluid challenge	134
Table (26):	Urine culture results in 7 survivors and 13 non survivors critically ill patients in relation to CD86 expression in peripheral blood monocytes by relative	
	intensity	135
Table (27):	Sputum culture results in 7 survivors and 13 non survivors critically ill patients in relation to aortic	
	blood flow after fluid challenge	136
Table (28):	SOFA score and CD86 relative intensity on peripheral blood monocytes results in 7 survivors and 13 non	
	survivors critically ill patients	
Table (29):	SOFA score and aortic blood flow by esophageal Doppler monitoring results in 7 survivors and 13 non	
	survivors critically ill patients	138
Table (30):	SOFA and length of stay results in 7 survivors and 13	
	non survivors critically ill patients	139
Table (31):	CD 86 relative intensity on peripheral blood monocytes	
	and aortic blood flow results in 7 survivors and 13 non	
	survivors critically ill patients	140

LIST OF FIGURES

Fig. No	Title	Page No.
Figure (1):	PIRO	9
Figure (2):	Protocol for early goal directed therapy.	24
Figure (3):	Esophageal Doppler monitor. Used with permission from Deltex	
	Medical, Inc. Severna Park, Md	66
Figure (4):	Esophageal Doppler monitors probe placement. Used with	
	permission from Deltex Medical, Inc., Severna Park, Md	70
Figure (5):	Esophageal Doppler monitors waveform. PV, Peak velocity;	
	FTc, flow time corrected; SD; stroke distance. Used with	70
Figure (6).	permission from Deltex medical, inc., Severna park, Md	/0
Figure (6):	Esophageal Doppler monitors waveform changes, used with permission of deltex medical, Inc., Severna Park, Md	71
Figure (7):	Challenges faced in interpreting pulmonary artery pressures.	/1
riguit (7).	Left: PAOP = 20 mm Hg; normal left ventricle (LV) with high	
	end-diastolic volume. Center: PAOP = 20 mm Hg; enlarged right	
	ventricle (RV) with juxtacardiac pressure; end-diastolic volume.	
	Right: PAOP = 20 mm Hg, hypertrophied noncompliant left	
	ventricle with low end-diastolic volume. Used with Permission	
	from Deltex Medical, Inc., Severna Park, Md	73
Figure (8):	Flow cytometers use the principle of hydrodynamic focusing for	
_	presenting cells to a laser (or any other light excitation source).	
	The sample is injected into the center of a sheath flow. The	
	combined flow is reduced in diameter, forcing the cell into the	
	center of the stream. This the laser one cell at a time. This	
	schematic of the flow chamber in relation to the laser beam in	
	the sensing area.(From Current Protocols In Cytometry, Unit 1.2	
F' (0)	, p1.2.2)	82
Figure (9):	Shows the optical system schematic for the XL analyser as well	0.4
E: (10).	as the optical configuration for the four FL PMT sensors	
	One parameter histogram. Dot Plot displaying FL1-FITC on the	63
rigure (11):	x axis and FL2-PE on the y axis.	86
Figure (12)	Listmode Data files.	
• • •	Schematic of Sorting Components	
	Deltex Cardio Q esophageal Doppler monitor.	
	Probe "Reusable"	
	Probe "Disposable"	
	Two dimensional echocardiography image in the parasternal	
	long axis view to measure the left ventricular outflow tract	
	diameter.	92
Figure (18):	Pulsed-Doppler echocardiography image in the apical four-	
	chamber view to measure velocity time integral of the left	
	ventricular outflow tract. Three consecutive cardiac cycles were	_
T	analyzed and averaged	92
Figure (19):	Equations used to calculate SV & CO (Feigenbaum's	~ ~
T' (20)	echocardiography, 6 th edition 2005)	
•	Why a fluid challenge is needed	
	The dilemma	
•	Problems with interpreting central venous pressure response of central venous pressure to small fluid challenges	
riguit (43).	response of central venous pressure to small fluid chancilees	

LIST OF FIGURES (Cont...)

Fig. No	Title	Page No.
Figure (24).	Despense of central various pressure to small fluid shellenges	06
	Response of central venous pressure to small fluid challenges ARTHUR BECK/SPL	
	Comparison between survivors and non-survivors critically ill	90
1 igure (20).	patients as regards age	102
Figure (27):	Comparison between 7 survivors and 13 non-survivors	
3 , ,	critically ill patients as regards gender	103
Figure (28):	Hemodynamics and vital signs in 7 survivors and 13 non	
	survivors critically ill patients	104
Figure (29):	Laboratory parameters in 7 survivors and 13 non survivors	
(-0)	critically ill patients	106
Figure (30):	Arterial blood gases in 7 survivors and 13 non survivors	107
Figures (21).	critically ill patients.	10/
rigure (31):	Blood culture results in 7 survivors and 13 non survivors critically ill patients	100
Figure (32).	Sputum culture results in 7 survivors and 13 non survivors	108
Figure (32).	critically ill patients.	109
Figure (33):	Urine culture results in 7 survivors and 13 non survivors	109
9 ()-	critically ill patients	110
Figure (34):	Comparison of change in CD86 level between 7 survivors and	
	13 non survivors.	113
Figure (35):	Trend of CD86% expression on peripheral blood monocytes in	
	surviving group throughout the four daily samples	114
Figure (36):	Trend of CD86% expression on peripheral blood monocytes in	
F: (25)	non-surviving group throughout the four daily samples.	114
Figure (37):	Trend of CD86 mean fluorescence ratio on peripheral blood	
	monocytes in surviving group throughout the four daily samples.	115
Figure (38).	Trend of CD86 mean fluorescence ratio on peripheral blood	113
rigure (50).	monocytes in non-surviving group throughout the four daily	
	samples	115
Figure (39):	1	
S . ,	in the surviving group throughout the four daily samples	116
Figure (40):	Trend of CD86 relative intensity on peripheral blood monocytes	
	in the non-surviving group throughout the four daily samples	116
Figure (41):	ROC curve of mean fluorescence ratio of CD 86 level in 7	
F' (40)	survivors and 13 non-survivors critically ill patients (day one)	117
Figure (42):	ROC curve of mean fluorescence ratio of CD 86 level in 7	110
Figure (43).	survivors and 13 non-survivors critically ill patients (day three) ROC curve of mean fluorescence ratio of CD 86 level in 7	118
Figure (43).	survivors and 13 non-survivors critically ill patients (day four)	119
Figure (44):	ROC curve of relative intensity of CD86 level in 7 survivors and	117
119010 (11)	13 non-survivors critically ill patients (day one).	120
Figure (45):	ROC curve of relative intensity of CD86 level in 7 survivors and	-20
	13 non-survivors critically ill patients (day three).	121
Figure (46):	ROC curve of CD86 relative intensity level on monocytes in 7	
	survivors and 13 non-survivors critically ill patients (day four)	122
Figure (47):	Aortic blood flow results in 7 survivors and 13 non survivors	
	critically ill patients	123

LIST OF FIGURES (Cont...)

Fig. No	Title	Page No.
F' (40)		
Figure (48):	Aortic blood flow results in 7 survivors and 13 non survivors	105
E: (40).	critically ill patients after fluid challenge	125
Figure (49):	Daily SOFA score results in 7 survivors and 13 non survivors	107
Figure (50).	critically ill patients.	127
Figure (50):	Correlation plot curve SOFA score and aortic blood flow in day 1	120
Figure (51).	Correlation plot curve SOFA score and aortic blood flow in day	128
rigure (51):	4	120
Figure (52)	Peripheral blood monocyte relative CD86 intensity in 7 survivors	129
Figure (32).	and 13 non survivors critically ill patients in relation to blood	
	culture results	120
Figure (53).	Aortic blood flow in 7 survivors and 13 non survivors critically	130
rigure (33).	ill patients in relation to blood culture results.	132
Figure (54).	Sputum culture results in 7 survivors and 13 non survivors	132
Figure (34).	critically ill patients in relation to CD86 expression on peripheral	
	blood monocytes by relative intensity	133
Figure (55):	· · · · · · · · · · · · · · · · · · ·	133
rigure (55).	critically ill patients in relation to aortic blood flow after fluid	
	challenge	134
Figure (56):	Urine culture results in 7 survivors and 13 non survivors	154
rigure (50).	critically ill patients in relation to CD86 expression in peripheral	
	blood monocytes by relative intensity	135
Figure (57):	Sputum culture results in 7 survivors and 13 non survivors	123
1 1gar ((,) (critically ill patients in relation to aortic blood flow after fluid	
	challenge.	136
Figure (58):	SOFA score and CD86 relative intensity on peripheral blood	
g ()-	monocytes results in 7 survivors and 13 non survivors critically	
	ill patients.	137
Figure (59):	SOFA score and aortic blood flow by esophageal Doppler	
9 (/-	monitoring results in 7 survivors and 13 non survivors critically	
	ill patients	138
Figure (60):	SOFA and length of stay results in 7 survivors and 13 non	
5 \ /	survivors critically ill patients	139
Figure (61):	CD 86 relative intensity on peripheral blood monocytes and	
	aortic blood flow results in 7 survivors and 13 non survivors	
	critically ill patients	140

LIST OF ABBREVIATIONS

Abbrev.	Meaning
ABF	Arterial blood flow.
ACTH	Adreno-Corticotropin hormone.
ADC	Analog to digital converter.
ALI	Acute lung injury.
APACHE	Acute physiology and chronic health education.
ARDS	Acute respiratory Distress syndrome.
CO	Cardiac output.
CRH	Corticotropin-releasing hormone.
CRP	C-reactive protein.
CVP.	Central venous pressure
DO_2	Oxygen delivery.
EDM	Esophageal Doppler monitoring.
FTC	Flow time corrected for heart rate.
ICU	Intensive care unit
IL-1	Interleukin-1
LPs	Lipo-poly-saccharine.
MAP	Mean arterial pressure.
MDF	Myocardial depressant factor
MHC-II	Major Histo-compatibility complex Class II.
MODS	Multi-organ dysfunction syndrome.
No	Nitric oxide.
PACs	Pulmonary artey Catheters.
PCT	Procalcitonin
PEEP	Positive end-expiratory pressure.
PMT	Photomultiplier tube.
rAPC	Recombinant activated protein C.
$SCVO_2$	Central venous oxyhemoglobin saturation
SIRS	Systemic inflammatory response syndrome.
SNP	Single nucleotide polymorphism.
SOFA Score	Sequential organ failure assessment score.
SV	Stroke volume.
TCR	T-cell receptor

Tumor necrosis factor.

Oxygen consumption.

TNF

 VO_2

INTRODUCTION

ajor surgery, poly trauma, burns, stroke and pancreatitis are often accompanied by a massive activation of the immune system called systemic inflammatory response syndrome (*Hotchkiss et al.*, 2003).

Due to counter regulatory mechanisms such as endocrine, paracrine or autocrine actions along with intracellular alterations this hyper-inflammation is followed by a temporary immunodeficiency called compensatory anti-inflammatory response syndrome. In its most severe form it is also referred to as immune paralysis state (*Kerstin et al.*, 2007).

Post-inflammatory immunodeficiency frequently becomes life threatening since patients are predisposed to contract nosocomial infection. However, these infections are difficult to identify since they are scarcely associated with any clinical signs. Moreover, these infections can not be fought by the enfeebled immune system of such patients and may evolve into sepsis. It is therefore not surprising that sepsis and resultant multiple organs failure are the most common causes of death in intensive care units (*ICUs*) (*Kerstin et al.*, 2007). In fact, in the United States alone more than 200,000 patients die of sepsis each year (*Angus et al.*, 2001).

The mechanisms responsible for post-inflammatory immunodeficiency are not clear, which is the reason why no causal therapy has been established to date (*Docke et al.*, 1997). Most probably, monocytic cells play a key role in the development and maintenance of this state. This monocytic cells seem to be impaired in their antigen presentation and inflammatory capacity. In fact, blood monocytes show a strongly reduced expression of major histocompatibility complex class II (MHC-II) and produce only minor amounts of pre-inflammatory cytokines in response to bacterial lipo-polysacchafrides (LPs) (*Docke et al.*, 1997). The magnitude of MHC-II reduction correlates with increased susceptibility to infection and subsequent mortality and is used for diagnosis of post-inflammatory immunodeficiency (*Kerstin et al.*, 2007).

MHC-II molecules are essential for the activation of CD4⁺ cells and therefore for the initiation of any adaptive immune response and enhancement of the innate immunity (*Hershman et al.*, 1990).

In fact, the engagement of the T-cell receptor (TCR) with MHC-II complexed with antigenic peptides delivers a stimulatory signal to CD4⁺ cells (*Volk et al.*, *1991*).

However, naïve CD4⁺ cells in particular need to receive a second signal set from Co-stimulatory molecules for activation. One of the most important Co-stimulatory molecule is blood antigen presenting cells from ICU patients is CD86 (*Kerstin et al.*, 2007).

Esophageal Doppler monitoring (EDM) is a minimally invasive method for continuous measuring of blood flow in the descending thoracic aorta (*Dark et al.*, 2004).

Since a relatively fixed proportion of total flow travels down the thoracic aorta, descending aortic blood flow (ABF) is considered a reliable estimate of cardiac output and its change (*Dark et al.*, 2004).

Esophogeal Doppler monitoring allows monitoring of the hemodynamic effects of ionotropic drugs (*Carious et al.*, 1998) and volume replacement (*Roeck et al.*, 2003).

Introduction

Furthermore, it was recently demonstrated that Esophageal Doppler monitoring enables one to predict fluid responsiveness, either by assessing the hemodynamic effects of passive leg raising (*Monnet et al.*, 2006) or by measuring the respiratory variation of a ortic blood flow (*Monnet et al.*, 2005).

Thus hypotensive patients with acute circulatory failure, restoration of an adequate mean arterial pressure may be associated with changes in aortic diameter that could significantly influence the circulation of aortic blood flow. If aortic diameter and flow increase with fluid loading with increasing arterial pressure then the estimated increase in aortic blood flow assuming a constant aortic diameter would be less than the true increase in aortic blood flow (Signer et al., 1989).