

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

PRODUCTION OF ULTRA HIGH STRENGTH CONCRETE USING LOCAL MATERIALS AND ITS APPLICATION IN AXIALLY LOADED COLUMNS

BY ENAS AHMED ABD EL-SALAM KHATTAB

B.Sc. of Civil Engineering 1996- Ain Shams University M.Sc. of Structural Engineering 2004 - Ain Shams University

A THESIS

Submitted in partial fulfillment for the Requirements of the degree of DOCTOR OF PHILOSOPHY

SUPERVISED BY

Prof. Dr. Samir Hasan Okba

Prof. of Properties and Testing of Materials, Faculty of Engineering, Ain Shams University.

Prof. Dr. Amr Salah El-Deib

Prof. of Properties and Testing of Materials, Faculty of Engineering, Ain Shams University.

Prof. Dr. Heba Hamed Bahnasawy

Prof. of Properties of Materials, Building Material And Quality Control Research Institute, HBRC.

Prof. Dr. Amr Ali Abd El-Rahman

Prof. of Concrete Structures,
Faculty of Engineering, Ain Shams University

Dr. Hossam Zakaria El-Karmoty

 $\begin{tabular}{ll} Associate Professor, Building Material \\ And Quality Control Research Institute, HBRC \,. \\ October 2010 \end{tabular}$

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her research supervisors, Prof. Dr. Samir Hasan Okba, and Prof. Dr. Heba Hamed Bahnasawy for their valuable advices, comments and efforts in reviewing the manuscript.

The author also wishes to record her special appreciation and gratitude to her advisors, Prof. Dr. Amr Salah El-Deib and Prof. Dr. Amr A. Abdelrahman, for their valuable guidance, helpful suggestions and continuous support during the research program.

The author wishes to express her sincere gratitude and great appreciation to her research supervisor, Associated Prof. Dr. Hossam Zakaria El-Karmoty for his valuable advices, comments, support and continuous encouragement through all this work.

The author wishes to express her thanks to Dr. Tamer El-Afandi, Eng. Shady Nabil and Eng. Fatma el-Zahraa Ibrahim for their help throughout the work.

The author would like to express his deep gratitude to the staff of Building Materials Research & Quality Control Institute at Housing and Building National Research Center (HBRC) members for their assistance during conducting the experimental program.

ABSTRACT

The development of Ultra High Strength Concrete (UHSC) started late in the 20th century by modifying some of the existing rules for designing concrete composition and selecting materials in High Strength Concrete (HSC) types. Beside ultra-high compressive strength (up to 200 MPa), UHSC also have considerably improved tensile strength, stiffness and durability compared to other concrete types. Therefore, they are also called ultra high performance concretes (UHPC). Ultra high strength concrete (UHSC) finds wide use in tall buildings, bridges, airports, power plants etc.

This research work investigates the production of UHSC using different local materials in Egypt, studies the different fresh and hardened properties of the produced concrete. It also investigates the behavior of columns cast with the produced concrete under axial loads. In addition, the research includes a theoretical study for predicting the behavior of concrete columns cast with ultra high strength concrete and comparing it with the experimental results.

An experimental program consists of three phases is designed. The first phase is designed to study the ability to produce Ultra High Strength Concrete (UHSC) using different locally available materials in Egypt. In this phase, a total of seventy two mixes are used to produce UHSC and to study the effect of different variables such as cement type and content, silica fume content, coarse aggregate type and content, fine aggregate type and content, existence of quartz powder, existence of steel fiber, and water to binder ratio on the compressive strength.

Phase two is designed to investigate the different fresh and hardened properties such as slump flow, compressive strength, flexural strength, indirect tensile strength, abrasion, length change, absorption, permeability and modulus of elasticity, of one selected mix of phase one, which has the highest compressive strength and compare it with a high strength concrete mix properties.

Phase three is designed to study the behavior of thirteen concrete columns manufactured from produced UHSC subjected to axial loading. The modes of failure and longitudinal compressive strains are studied. The parameters studied in this phase are concrete strength, longitudinal steel ratio, stirrups volumetric ratio, steel fiber content and column aspect ratio (L/d).

From the adopted experimental program in Phases one and two, ultra high strength concrete is successfully produced using local available materials in Egypt of strengths up to 150 MPa. The experimental results show that UHSC exhibits extraordinary mechanical properties compared to normal or high strength concretes. UHSC also has excellent resistance to abrasion, lower water absorption and water penetration. Phase three demonstrates the behavior of short UHSC columns under axial load and a theoretical prediction of the deformational behavior for these columns is developed. A design equation for designing short UHSC columns is presented.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	i
STATEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	V
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF PHOTOS	xvi
LIST OF SYMBOLS	xvii
CHAPTER (1): INTRODUCTION	
1.1 GENERAL	1
1.2 OBJECTIVES	2 3
1.3 SCOPE AND CONTENTS	3
CHAPTER (2): LITERATURE REVIEW	
2.1 GENERAL	6
2.2 HISTORY OF DEVELOPMENT AND APPLICATIONS	7
2.3 MATERIALS	9
2.3.1 Cement	10
2.3.2 Binders and fillers	12
2.3.3 Aggregates	18
2.3.4 Fibers	22
2.4 MIX PROPORTIONS OF UHSC	25
2.5 CURING	31
2.6 APPLICATIONS OF UHPC	38
2.7 SUMMARY	41
CHAPTER 3: THE EXPERIMENTAL PROGRAM	
3.1. GENERAL	63
3.2. EXPERIMENTAL PROGRAM OF PHASE ONE	63
3.2.1. Materials	64
3.2.1.1. Cement	64
3.2.1.2. Aggregates	64
3.2.1.2.1. Crushed dolomite	65
3.2.1.2.2. Crushed basalt	65
3.2.1.2.3. Crushed marble	65
3 2 1 2 4 Crushed granite	65

	Page
3.2.1.2.5. Crushed quartz	65
3.2.1.2.6. Siliceous sand	66
3.2.1.2.7. Grinded quartz	66
3.2.1.3. Fillers	66
3.2.1.3.1. Quartz powder	66
3.2.1.4. Additives	66
3.2.1.4.1. Mineral admixtures	66
3.2.1.4.2. Chemical admixtures	66
3.2.1.5. Steel fibers	67
3.2.1.6. Mixing water	67
3.2.2. Mixing	67
3.2.3. Curing	68
3.2.3.1. Water curing	68
3.2.3.2. Steam curing	68
3.3.EXPERIMENTAL PROGRAM OF PHASE TWO	79
3.3.1. Fresh Concrete Properties	79
3.3.1.1. Slump flow	79
3.3.2. Hardened Concrete Properties	79
3.3.2.1. Compressive strength	79
3.3.2.2. Flexural strength	80
3.3.2.3. Indirect tensile strength	80
3.3.2.4. Abrasion	80
3.3.2.5. Length change	80
3.3.2.6. Absorption	81
3.3.2.7. Permeability	81
3.3.2.8. Modulus of elasticity	81
3.4. EXPERIMENTAL PROGRAM OF PHASE THREE	83
3.4.1. Test Specimens	83
3.4.2. Materials	85
3.4.2.1. Concrete	85
3.4.2.2. Steel reinforcement	85
3.4.3. Fabrication of Specimens	85
3.4.4. Instrumentation	86
3.4.5. Test Setup	86
CHAPTER 4: TEST RESULTS AND DISCUSSION	
4.1. GENERAL	95
4.2. MATERIAL PROPERTIES	95
421 Cement	95

	Page
4.2.2. Aggregates	96
4.2.2.1. Crushed dolomite	96
4.2.2.2. Crushed bazalt	96
4.2.2.3. Crushed marble	96
4.2.2.4. Crushed granite	96
4.2.2.5. Crushed quartz	96
4.2.2.6. Siliceous sand	97
4.2.2.7. Grinded quartz	97
4.3. FILLERS	97
4.3.1. Quartz Powder	97
4.4. ADDITIVES	97
4.4.1. Mineral Admixtures	97
4.5. STEEL REINFORCEMENT	97
4.6. PHASE (1) TEST RESULTS	106
4.6.1. Effect of Cement Grade on the Compressive Strength	106
4.6.2. Effect of Cement Content on the Compressive Strength	107
4.6.3. Effect of Silica Fume on the Compressive Strength	108
4.6.4. Effect of Sand Type on the Compressive Strength	108
4.6.5. Effect of Coarse Aggregate on the Compressive Strength	109
4.6.5.1. Effect of coarse aggregate type	109
4.6.5.2. Effect of coarse aggregate size	110
4.6.5.3. Effect of coarse aggregate content	110
4.6.6. Effect of Quartz Powder on the Compressive Strength	111
4.6.7. Effect of Steel Fiber Content on the Compressive Strength	111
4.6.8. Effect of Curing Condition on the Compressive Strength	112
4.7. PHASE (2) TEST RESULTS	130
4.7.1. Mechanical Properties of Concrete Mix	130
4.7.1.1. Compressive strength	130
4.7.1.2. Indirect tensile strength	131
4.7.1.3. Flexural strength	131
4.7.1.4. Length change	131
4.7.1.5. Modulus of elasticity	132
4.7.2. Durability Investigation	132
4.7.2.1. Permeability test	132
4.7.2.2. Absorption test	133
4.7.2.3. Abrasion test	133
4.7.3. Comparison between UHSC and HSC	133
4.8. PHASE (3) TEST RESULTS	134

	Page
CHAPTER 5: ANALYSIS AND DISCUSSION OF	
EXPERIMENTAL RESULTS OF AXIALLY LOADED	
COLUMNS	
5.1. GENERAL	138
5.2. EXPERIMENTAL RESULTS	139
5.3. DISCUSSION OF EXPERIMENTAL RESULTS	149
5.3.1. Effect of Longitudinal Reinforcement Ratio	150
5.3.2. Effect of Steel Fiber Percentage	150
5.3.3. Effect of Stirrups Ratio	151
5.3.4. Effect of Presence of the Longitudinal Steel Reinforcement	t 152
and the Stirrups	132
5.3.5. Effect of Concrete Compressive Strength	153
5.3.6. Effect of Aspect Ratio of The Columns	153
CHAPTER 6: ANALYTICAL STUDY AND DESIGN	
CONSIDERATIONS	
6.1. GENERAL	173
6.2. COMPARISON OF ULTIMATE CAPACITY OF UHS	SC
COLUMNS WITH CURRENT DESIGN PROCEDURES	174
6.3. PREDICTION OF LOAD – LONGITUDINAL	176
COMPRESSIVE STRAIN BEHAVIOUR FOR TESTED	
SPECIMENS	
6.3.1. Specimen C1	177
6.3.2. Specimen C2	178
6.3.3. Specimen C3	178
6.3.4. Specimen C4	178
6.3.5. Specimen C5	179
6.3.6. Specimen C6	179
6.3.7. Specimen C7	179
6.3.8. Specimen C8	180
6.3.9. Specimen C9	180
6.3.10. Specimen C10	180
6.3.11. Specimen C11	180
6.3.12. Specimen C12	181
6.4. DISCUSSION	181
CHAPTER (7): SUMMARY AND CONCLUSIONS	
7.1 SUMMARY	194
7.2 CONCLUSIONS	195

7.2.1 Regulations and Recommendations for Ultra High Strength Concrete	Page 195
7.2.2 Properties of Ultra High Strength Concrete7.2.3 Application of Ultra High Strength Concrete in Axial Loaded Columns	198 199
7.3 RECOMMENDATIONS FOR FUTURE RESEARCH WORK	201
REFERENCES	202

LIST OF TABLES

	Page
Table 2.1 Effect of cement characteristics on concrete properties [27]	42
Table 2.2 Chemical composition of the silica fumes [15]	43
Table 2.3 Components of the mixes prepared in stage 1[32]	44
Table 2.4 Components of the mixes prepared for stage 2 [32]	44
Table 2.5 Proportion of self-compacting UHPC with and without coarse aggregates [31]	45
Table 2.6 Proportion of compacted / self compacting UHPC with and without coarse aggregates [34]	45
Table 2.7 Correlation analysis [2]	46
Table 2.8 Range of input parameters in database [35]	47
Table 2.9 Results of plain concrete specimens, which were cured under different conditions [11]	47
Table 2.10 Results of SFCBC specimens, which were cured under different conditions [11]	47
Table 2.11 Heat-treatment procedures with different maximum temperatures [26]	48
Table 2.12 Symbols and properties of specimens [28]	48
Table 2.13 Mode of failure and experimental values of $N_{u,test}$ and ϵ_c [28]	49
Table 3.1 Mix proportions for phase 1 mixes	70
Table 3.2 Mix proportion of high strength concrete	82
Table 3.3 Tested columns details	88
Table 3.4 The average compressive strength for different specimens at testing date.	88
Table 4.1 Physical properties of Portland cement CEM I 42,5 N	98
Table 4.2 Chemical analysis of Portland cement CEM I 42,5 N	98
Table 4.3 Physical properties of Portland cement CEM I 52,5 N	99
Table 4.4 Chemical analysis of Portland cement CEM I 52,5 N	99
Table 4.5 Properties of coarse aggregate	100
Table 4.6 Coarse aggregate grading	101
Table 4.7 Physical properties of fine aggregate	101
Table 4.8 Fine aggregate grading	101
Table 4.9 Chemical composition of quartz powder	102
Table 4.10 Physical properties of silica fume	102
Table 4.11 Chemical composition of silica fume	103
Table 4.12 Properties of 8-mm diameter reinforcing steel	103
Table 4.13 Properties of 10-mm diameter reinforcing steel	104
Table 4.14 Properties of 12- mm diameter reinforcing steel	104
Table 4.15 Properties of 16-mm diameter reinforcing steel	104

	Page
Table 4.16 Properties of 18-mm diameter reinforcing steel	105
Table 4.17 The compressive strength results for phase 1 mixes	113
Table 4.18 The compressive strength results of mixes with different cement grade	117
Table 4.19 The compressive strength results of mixes with different cement content	117
Table 4.20 The compressive strength results of mixes with different silica fume content	117
Table 4.21 The compressive strength results of mixes with different sand type	118
Table 4.22 The compressive strength results of mixes with D_{10} and $B1_{10}$ with different silica fume content	118
Table 4.23 The compressive strength results of mixes with D_{10} and Q_{10} with different silica fume content	118
Table 4.24 The compressive strength results of mixes with D ₅ and Q ₅ with different curing condition	119
Table 4.25 The compressive strength results of mixes with D_{10} and D_5	119
Table 4.26 The compressive strength results of mixes with different fine	110
aggregate content	119
Table 4.27 The compressive strength results of mixes with different	120
quartz powder content	120
Table 4.28 The compressive strength results of mixes with different steel fiber content	120
Table 4.29 The compressive strength results of mixes with different	
curing condition	120
Table 4.30 The compressive strength results of HSC and UHSC	135
Table 4.31 The compressive strength results of UHSC for different	135
specimens	133
Table 4.32 The indirect tensile strength results of HSC and UHSC	135
Table 4.33 The flexural strength results of HSC and UHSC	135
Table 4.34 The Modulus of elasticity results of HSC and UHSC	136
Table 4.35 The permeability coefficient results of HSC and UHSC	136
Table 4.36 Absorption test results of HSC and UHSC	136
Table 4.37 Abrasion test results of HSC and UHSC	136
Table 4.38 Test results of phase two	137
Table 5.1 Experimental results of tested columns	155
Table 6.1 Comparison between experimental ultimate capacities for tested specimens with analytical ultimate capacities calculated as per different codes	184

LIST OF FIGURES

Fig. 2.1 Cement factor vs compressive strength of RPC [45]	Page 50
Fig. 2.2 Strength developments for EMC concrete mixtures [17]	50
Fig. 2.3 The effect of silica fume content on the compressive strength of RPC [45]	51
Fig. 2.4 Results of stage (I) strength tests [32]	51
Fig. 2.5 Results of the experimental test carried out in stage 2 [32]	52
Fig. 2.6 Component volume fractions in HPC, SCC and UHPC [31]	52
Fig. 2.7 Strength development of Ultra-High-Strength concrete and mortar [25]	53
Fig. 2.8 Compressive strength with age for different steel fibres volume	
fraction [16]	53
Fig. 2.9 Effect of steel fiber on splitting tensile strength/compressive strength ratio [16]	54
Fig. 2.10 Characteristic patterns of load-deflection curves of prisms [12]	54
Fig. 2.11 Characteristic patterns of load-deflection curves of beams [12]	55
Fig. 2-12 Proportioning diagram [2]	55
Fig. 2.13 Method for HPC mixture proportioning [44]	56
Fig. 2.14 Proposed neural network [35]	56
Fig. 2.15 NN predicted compressive strength versus experimental compressive [35]	57
Fig. 2.16 NN predicted slump values versus experimental slump values [35]	57
Fig. 2.17 Compressive strength of UHPC made with CEM I 42,5 R-HS and heat-treated at various temperatures [26]	58
Fig. 2.18 Compressive strength of UHPC made with CEM III/B 42,5 NW/HS and heat-treated at various temperatures [26]	58
Fig. 2.19 Setup of the experiments [42]	59
Fig. 2.20 Force-strain-relationship of the specimen with different	59
concrete grades and load arrangements [42]	60
Fig. 2.21 Column reinforcement [28]	60
Fig. 3.1 Phase one experimental program	75
Fig. 3.2 Phase three experimental program	89
Fig. 4.1 Influence of cement grade on 3 months compressive strength	121
Fig. 4.2 Influence of cement content on compressive strength	121
Fig. 4.3 Influence of cement content on compressive strength for mixes with steel fiber 3%	122
Fig. 4.4 Influence of silica fume content on compressive strength	122

	Page
Fig. 4.5 Influence of sand type on compressive strength for mixes with crushed dolomite as coarse aggregate (D_{10})	123
Fig. 4.6 Influence of sand type on compressive strength for mixes with crushed basalt as coarse aggregate ($B1_{10}$)	123
Fig. 4.7 Influence of sand type on compressive strength for mixes with crushed dolomite as coarse aggregate (D_5)	124
Fig. 4.8 Influence of Coarse aggregate type on 3 month compressive strength for mixes containing (D_{10}) and $(B1_{10})$ with different silica fume content	124
Fig. 4.9 Influence of Coarse aggregate type on 3 month compressive strength for mixes containing (D_{10}) and (Q_{10}) with different silica fume content	125
Fig. 4.10 Influence of Coarse aggregate type on 3 month compressive strength for mixes containing (D_5) and (Q_5) with different curing condition	125
Fig. 4.11 Influence of coarse aggregate size on 3 month compressive strength for mixes containing (D_{10}) and (D_5) for different mixes	126
Fig. 4.12 Influence of coarse aggregate content on compressive strength Fig. 4.13 Influence of quartz powder content on compressive strength	126 127
Fig. 4.14 Influence of steel fiber content on compressive strength for mixes (Water curing condition)	127
Fig. 4.15 Influence of steel fiber content on compressive strength for mixes (Steam curing condition)	128
Fig. 4.16 Influence of curing condition on compressive strength for mixes with (D_5) as coarse aggregate	128
Fig. 4.17 Influence of curing condition on compressive strength for mixes with (Q_5) as coarse aggregate	129
Fig. 4.18 Length change for selected mix	137
Fig. 5.1 The relationship between the applied load and the longitudinal compressive strain for column C0	157
Fig. 5.2 The relationship between the applied load and the longitudinal compressive strain for column C1	158
Fig. 5.3 The relationship between the applied load and the longitudinal compressive strain for column C2	159
Fig. 5.4The relationship between the applied load and the longitudinal compressive strain for column C3	160
Fig. 5.5 The relationship between the applied load and the longitudinal compressive strain for column C4	161
Fig. 5.6 The relationship between the applied load and the longitudinal compressive strain for column C5	162

	Page
Fig. 5.7 The relationship between the applied load and the longitudinal	163
compressive strain for column C6	103
Fig. 5.8 The relationship between the applied load and the longitudinal	164
compressive strain for column C7	
Fig. 5.9 The relationship between the applied load and the longitudinal	165
compressive strain for column C8	
Fig. 5.10 The relationship between the applied load and the longitudinal compressive strain for column C9	166
Fig. 5.11 The relationship between the applied load and the longitudinal	
compressive strain for column C10	167
Fig. 5.12 The relationship between the applied load and the longitudinal	168
compressive strain for column C11	108
Fig. 5.13 The relationship between the applied load and the longitudinal	169
compressive strain for column C12	
Fig. 5.14 The load-strain relationships of columns C2, C3, C4 and C5	170
Fig. 5.15 The load-strain relationships of columns C2, C6, C7 and C8	170
Fig. 5.16 The load-strain relationships of columns C2, C9 and C10	171
Fig. 5.17 The load-strain relationships of columns C0 and C1	171
Fig. 5.18 The load-strain relationships of columns C1 and C2	172
Fig. 5.19 The load-strain relationships of columns C2, C12 and C11	172
Fig. 6.1 Relation between the experimental ultimate axial load and the	
calculated ultimate axial load according to the ACI and ISO provisions	185
Fig. 6.2 Relation between the experimental ultimate axial load and the	
calculated ultimate axial load according to the Canadian code provisions	185
Fig. 6.3 Relation between the experimental ultimate axial load and the	106
calculated ultimate axial load according to the British code provisions	186
Fig. 6.4 Normalized ultimate loads for different columns	186
Fig. 6.5 The experimental and analytical results for axial load versus	107
longitudinal strain for Specimen C1	187
Fig. 6.6 The experimental and analytical results for axial load versus	187
longitudinal strain for Specimen C2	107
Fig. 6.7 The experimental and analytical results for axial load versus	188
longitudinal strain for Specimen C3	100
Fig. 6.8 The experimental and analytical results for axial load versus	188
longitudinal strain for Specimen C4	100
Fig. 6.9 The experimental and analytical results for axial load versus	189
longitudinal strain for Specimen C5	
Fig. 6.10 The experimental and analytical results for axial load versus	189
longitudinal strain for Specimen C6	
Fig. 6.11 The experimental and analytical results for axial load versus	190
longitudinal strain for Specimen C7	

	Page
Fig. 6.12 The experimental and analytical results for axial load versus	190
longitudinal strain for Specimen C8	190
Fig. 6.13 The experimental and analytical results for axial load versus	191
longitudinal strain for Specimen C9	171
Fig. 6.14 The experimental and analytical results for axial load versus	191
longitudinal strain for Specimen C10	171
Fig. 6.15 The experimental and analytical results for axial load versus	192
longitudinal strain for Specimen C11	172
Fig. 6.16 The experimental and analytical results for axial load versus	192
longitudinal strain for Specimen C12	172
Fig. 6.17 Schematic behavior of HSC columns subjected to concentric	
axial loads, incorporating low, medium, and high amounts of transverse	193
reinforcement (ACI 441R-96)	