The Conjoint Role of Echocardiogram and Cardiac Magnetic Resonance Imaging in Follow up of Patients Post Tetralogy of Fallot Repair

Thesis

Submitted for Partial Fulfillment of MD Degree in Cardiology

Βγ Abla Ali Ahmed

M.Sc. Cardiology

Under Supervision of Dr. Maiy Hamdy El Sayed

Professor of Cardiology Faculty of Medicine –Ain Shams University

Dr. Azza Abdallah El Fiky

Professor of Cardiology Faculty of Medicine –Ain Shams University

Dr. Hebatalla Mohamed Attia

Assistant Professor of Cardiology Faculty of Medicine –Ain Shams University

Dr. Yasmin Abd El Razek Esmail

Lecturer of Cardiology Faculty of Medicine –Ain Shams University

> Cardiology Department Faculty of Medicine Ain Shams University 2017

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr Maiy Hamdy El Sayed,** Professor of Cardiology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Azza Abdallah El Fiky,** Professor of Cardiology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great support throughout this work.

I am deeply thankful to **Dr Hebatalla**Mohamed Attia, Assistant Professor of Cardiology,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Yasmin Abd El Razek Esmail,** Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I also would like to show my great gratitude for the great help and efforts exerted by **Dr. Mohamed Donia**, Lecturer of Radiology, who had a pivotal role in conducting the CMR examination to our patients

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Abla Ali Ahmed

List of Contents

Title	Page No.
List of Tables	5
List of Figures	8
List of Abbreviations	12
Introduction	1
Aim of the Work	4
Review of Literature	
Tetralogy of Fallot	5
Surgical Repair of TOF	17
Post Repair Sequel	28
Imaging Techniques for Follow up of TOF Repair Pat	ients41
Patients and Methods	62
Results	92
Discussion	121
Limitations	130
Summary	131
Conclusion	133
Recommendations	134
References	135
Data Sheet	
Arabic summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Estimation of the RA pressure in relation	
	to the respiratory variation in the size of	
	the IVC	68
Table (2):	Suggested normal values for RV LGS in	
	children according to different age groups	
Table (3):	Normal values for RVLGS in adults	71
Table (4):	The suggested normal ranges for RV EF by CMR	88
Table (5):	Demographic characteristics of the study	
	group.	92
Table (6):	Descriptive analysis of RV size and	
	functions data.	94
Table (7):	Descriptive analysis of RV longitudinal	
	strain data and RVSP.	96
Table (8):	Descriptive analysis of different PR	
	assessment parameters.	97
Table (9):	Descriptive analysis of the RVOT	
	assessment parameters.	98
Table (10):	Descriptive analysis of peripheral PS and	
	TR grading.	99
Table (11):	Descriptive analysis of the LV size and	
	systolic function data	100
Table (12):	Descriptive analysis of the aortic root	
	diameters, aortic arch sidedness, AR	
	grading and residual shunts	101
Table (13):	Descriptive analysis of RV volumes and	
	function by CMR.	103
Table (14):	Descriptive analysis of the LV volumes	
	and function.	104
Table (15):	Descriptive analysis of the PRF, TR	
	grading and AR grading.	105

List of Tables (Cont...)

Table No.	Title	Page	No.
Table (16):	Descriptive analysis of the		
	diameters and percentage of perig		
	PS among our study group by CMR.		106
Table (17):	Descriptive analysis of the aortic		
	diameter and presence of residual sl		108
Table (18):	RV diameters by TTE and RV volumed CMR.	•	109
Table (19):	Regression analysis of the correl	ations	
	between RV diameters by TTE ar	nd RV	
	volumes by CMR		110
Table (20):	Regression analysis of correlation	of RV	
	EDV by CMR and RV longit	udinal	
	diameter by TTE		111
Table (21):	Regression analysis of correlation	of RV	
	EDV by CMR and RV horizontal dia	meter	
	by TTE.		111
Table (22):	Regression analysis of correlation		
	EDV by CMR and RV basal diame	•	
	TTE.		112
Table (23):	Regression analysis of correlation		
	ESV by CMR and RV longit		
	diameter by TTE.		112
Table (24):	Regression analysis of correlation		
	ESV by CMR and RV transverse dia		110
T 11 (0F)	by TTE.		113
Table (25):	Regression analysis of correlation		
	ESV by CMR and RV basal diame	-	110
Table (90): (TTE.		113
1 abie (26): (Comparison of RV FAC by TTE resul		114
Table (27):	RV EF by CMR by independent T te RV EF by CMR relationship to T		114
1 able (21):	and Global strain by TTE		115
	and Giobai strain by 1111		тто

List of Tables (Cont...)

Table No.	Title	Page No.
Table (28):	Relationship between PRF by CM	IR and
	PR to PV annulus ratio and DT	of PR
	Doppler signal by TTE	115
Table (29):	Comparison of RVOT dia	
	measured by CMR and TTE in d	ifferent
	TTE views.	116
Table (30):	Correlation between LV EDDs and	
	by TTE and EDVs and ESVs by CM	IR117
Table (31):	Comparison between LV EF by T'	TE and
	CMR.	120

List of Figures

Fig. No.	Title Page N	V 0.
Fig. (1):	TOF (Congenital and children's heart centre.)	10
Fig. (2):	Image kindly provided by Robert H Anderson	12
Fig. (3):	Surgical steps of transanular patch repair of	
	tetrology of Fallot	23
Fig. (4):	Division of infundibular muscle bundles as the	
	first step of transanular approach	24
Fig. (5):	VSD Patch insertion	25
Fig. (6):	Transcutaneous pulmonary valve replacement	35
Fig. (7):	Evaluation of PR by Doppler echocardiography	
_	showing mild, moderate, and severe degrees	47
Fig. (8):	TAPSE of normal and depressed RV systolic	
_	function	51
Fig. (9):	CMR SSFP image of an aneurysm of the	
O	RVOT	56
Fig. (10):	CMR evaluation of an RVOT aneurysm with	
G , ,	thrombus in a patient with repaired TOF	56
Fig. (11):		
0 ,	angiographic reconstruction 3D representation	
	of proximal branch RPA stenosis	58
Fig. (12):	-	
8 . ,	frame with the three RV diameters	65
Fig. (13):		
Fig. (14):		
8 . ,	to the lateral TV annular attachment for	
	measurement of TAPSE.	67
Fig. (15):		
a ()*	with measurement of the TR max PG using	
	Bernoulli equation for measurement of RVSP	68
Fig. (16):	RV Longitudinal strain analysis	

List of Figures (Cont...)

Fig. No.	Title Page 1	No.
Fig. (17):	Parasternal short axis view at the level of PA with the green arrow represents the internal	
	diameter of the RVOT at the sub-valvular	
	level(proximal RVOT diameter), the orange	
	arrow represents measurement of the RVOT	
	at the PV level(distal RVOT diameter)	72
Fig. (18):		
	with aneurysmal dilatation of the RVOT	72
Fig. (19):		
	window with measurement of the RVOT at the	
	main three levels: subvalvular, valvular and	70
F! . (90)	the main PA.	
Fig. (20):	Parasternal short axis view at the level of PA	
Fim (01).	with color Doppler flow of the PA	
Fig. (21):	9 11	14
Fig. (22):	Shows an apical four chamber view with color Doppler of the TV flow showing a moderate to	
	severe TR	75
Fig. (23):		10
1 16. (20).	intensity of the TR is less intense relative to	
	the spectral Doppler signal of the TV inflow	75
Fig. (24):		
8 - (/-	during end diastolic frame with measurement	
	of the longitudinal diameter and horizontal	
	diameter of the RA.	76
Fig. (25):	The figure shows M-mode of the LV at the	
	level just distal to the MV with measurement	
	of the end diastolic and end systolic diameters	
	for measurement of the EF.	78
Fig. (26):	Parasternal long axis view with measurement	
	of the aortic root	79

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (27):	Apical five chamber view showing seated VSD patch at the subaortic patch color Doppler showing no residu	osition
	across	
Fig. (28):	A modified RAO view showing a RVOT.	dilated83
Fig. (29):	Modified axial sequence at the level branches	
Fig. (30):	Q-flow sequence of the PV for measurer the PR index and fraction	ment of
Fig. (31): Fig. (32):	A true four chamber view showing sever	re TR86 the RV
Fig. (33):	of the RV volume and function	87 he LV
Fig. (34):		t of AV
Fig. (35):	and aortic root Patient No.(41): RPA stenosis by CMR	
Fig. (36):	Patients No (48): Markedly dilated RV	OT by
Fig. (37):	CMRCorrelation between RV transverse di	ameter
Fig. (38):	by TTE and ESV by CMR Mean and standard deviation of RV F	
Fig. (39):	TTE and RV EF by CMR Mean and SD of RVOT diameters measurements.	
8 - (00)•	TTE in different views and RVOT dia	
Fig. (40):	measured by CMR	117
118. (10).	EDV by CMR.	

List of Figures (Cont...)

Fig. No.	Title Page N	10.
Fig. (41):	Correlation between LV EDD by TTE and LV	
	ESV by CMR	118
Fig. (42):	Correlation between LV ESD by TTE and LV	
	EDV by CMR.	119
Fig. (43):	Correlation between LV ESD by TTE and LV	
	ESV by CMR	119
Fig. (44):	Mean and SD of LV EF by TTE and CMR	120

List of Abbreviations

Abb.	Full term
Ao:	Aorta
<i>AP</i> :	
	Aortic regurgitation
	Atrial septal defect
	American society of echocardiography
	Congenital heart disease
<i>CM</i> :	
	Cardiac magnetic resonance
	Deceleration time
	Electrocardiogram
	End diastolic volume
EDVi:	End diastolic volume indexed to body surface
	area
<i>EF</i> :	Ejection fraction
	End systolic volume
<i>ESVi</i> :	End systolic volume indexed to body surface
	area
<i>FAC</i> :	Fractional area change
<i>FIG</i> :	Figure
<i>Fr</i> :	French
<i>GLS</i> :	Global longitudinal strain
<i>ICD</i> :	$Implantable\ cardioverter\ defibrillator$
<i>IEC</i> :	$Infective\ endocarditis$
<i>IVC</i> :	Inferior venae cava
<i>IVS</i> :	$Intervent ricular\ septum$
<i>Kg</i> :	Kilograms
<i>LAD</i> :	Left anterior descending coronary artery
<i>LGE</i> :	$Late\ gadolinium\ enhancement$
<i>LPA</i> :	Left pulmonary artery

List of Abbreviations (Cont...)

Abb.	Full term
<i>LV</i> :	Left ventricle
<i>Mesc</i> :	Milli-second
<i>MPA</i> :	Main pulmonary artery
<i>MRA</i> :	Magnetic resonance angiography
<i>MRI</i> :	Magnetic resonance imaging
<i>MV</i> :	Mitral valve
<i>No:</i>	Number
<i>PA</i> :	Pulmonary artery
<i>PAs</i> :	Pulmonary arteries
<i>PC</i> :	Phase contrast
<i>PDA</i> :	Patent ductus arteriosus
<i>PHT</i> :	Pressure half time
<i>PR</i> :	Pulmonary regurgitation
<i>PRV</i> :	Pulmonary regurgitant fraction
<i>PS</i> :	Pulmonary stenosis
<i>PV</i> :	Pulmonary valve
<i>PVR</i> :	Pulmonary valve replacement
<i>PW:</i>	Posterior wall
<i>RA</i> :	Right atrium
<i>RPA</i> :	Right pulmonary artery
<i>RV</i> :	Right ventricle
<i>RVOT:</i>	Right ventricular outflow tract
<i>RVOTi:</i>	Right ventriculat out flow tract dimeter
	indexed to body surface area
<i>RVOTO</i> :	Right ventricular outflow tract obstruction
<i>RVSP</i> :	Right ventricular systolic pressure
	Steady state free precession
<i>SV</i> :	
<i>TAP</i> :	Transannular parch

List of Abbreviations (Cont...)

Abb.	Full term
<i>TAPSE</i> :	Tricuspid annular plane systolic excursion
<i>TEE</i> :	$Transe sophage al\ echo cardiography$
<i>TOF:</i>	Tetralogy of Fallot
<i>TR</i> :	Tricuspid regurgitation
<i>TSE</i> :	Turbo spin echo
<i>TTE</i> :	$Transthoracic\ echocardiography$
<i>TV</i> :	Tricuspid valve
<i>VSD</i> :	Ventricular septal defect

INTRODUCTION

Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease. Total repair for TOF has been available for 50 years, with a favorable outcome in most patients (Nollert et al., 1997).

Survivors of TOF repair constitute a large and growing population of patients. Although postsurgical outcome is generally favorable, as these patients move into adulthood, late morbidity is becoming more prevalent and the notion that TOF been "definitively repaired" is increasingly being challenged (Helbing et al., 2000).

Surgical repair can be performed during the first months of life, ideally at the age of 3 to 4 months, with low perioperative mortality. Then the survival curve seems to deteriorate after 25 years post TOF repair, and significant residual findings may occur resulting in significant morbidity during follow-up (Nollert et al., 1997).

Surgical repair of TOF may be followed by various conditions and residual findings, early postoperatively or late during follow-up. Most of these conditions affect the right ventricular outflow tract and the pulmonary arteries and thus, indirectly, the right ventricle (RV) leading to RV dilatation and dysfunction, atrial and ventricular arrhythmias, congestive heart failure, and sudden death (Taussig et al., 1947).