Symmetry in High Energy Physics

Thesis submitted for the degree of Doctor of Philosophy in physics to

Physics Department
University College of Women's for Arts, Science and
Education,

Ain Shams University

By Hayam Yassin Sayed Hassanien M.SC. (2006)

Under Supervision of:

- 1- **Prof. Hala Mahmoud Khalil**, Assistant Professor of theoretical physics, Physics department, University College of Women's for Arts, Science and Education, Ain Shams university.
 - 2- **Dr. Tarek Mohamed Abdel Hamid Awwad**, Lecturer of theoretical physics, Physics department, University College of Women's for Arts, Science and Education, Ain Shams university.
 - 3- Dr. Gaber Younes Mohamed Faisel, Lecturer of theoretical physics, Meteorological Authority.

Physics Department
University College of Women's for Arts, Science and
Education,
Ain Shams University
(2010)

Symmetry in high energy physics

Name of the student: Hayam Yassin Sayed Hassanien Under Supervision of:

- 1- Prof. Hala Mahmoud Khalil, Assistant Professor of theoretical physics, Physics department, University College of Women's for Arts, Science and Education, Ain Shams university.
- 2- Dr. Tarek Mohamed Abdel Hamid Awwad, Lecturer of theoretical physics, Physics department, University College of Women's for Arts, Science and Education, Ain Shams university.
- 3- Dr. Gaber Younes Mohamed Faisel, Lecturer of theoretical physics, Meteorological Authority.

Physics Department
University College of Women's for Arts, Science and
Education,
Ain Shams University
(2010)

Contents

1	Theoretica	al Backg	round	1
	1.1	Basic In	puts From Quantum Field Theory	1
		1.1.1	Wave equations	1
		1.1.2	Lagrangian formalism	4
		1.1.3	Symmetries and conservation laws	6
		1.1.4	Classical electrodynamics	7
	1.2	The Star	ndard Model	10
		1.2.1	The gauge structure of the SM	13
		1.2.2	Massive gauge bosons?	30
		1.2.3	Spontaneous symmetry breaking. "Hid-	
			den" symmetry	31
		1.2.4	Spontaneous Breaking of a Global Gauge	
			Symmetry	34
		1.2.5	The Higgs mechanism	36
		1.2.6	Spontaneous breaking of a local $SU(2)$	
			gauge symmetry	39
		1.2.7	The $SU(2)_L \otimes U(1)_Y$ theory	45
		1.2.8	The Basic Lagrangian	49
		1.2.9	Problems with the Standard Model	54
2	Physics Bo	eyond th	ne Standard Model	64
	2.1	Grand U	Inified Theories	64

	2.2 Supersymmetry			66	
			2.2.1	Minimal supersymmetric extension of	
				standard model	73
			2.2.2	SUSY Particles in the MSSM	87
		2.3	Mass In	sertion Approximation	89
		2.4	CP Viol	ation In Supersymmetric Theories	91
			2.4.1	Mixing of neutral mesons	96
			2.4.2	Classification of CP-violating effects .	109
			2.4.3	CP Violation in the Standard Model .	111
			2.4.4	CP Violation in MSSM	119
			2.4.5	CP Violation in B decays	121
3	Res	ult and	l Discus	sion	127
		3.1	Operato	r Product Expansion	128
		3.2	The Wes	ak Effective Hamiltonian in the SM	134
		3.3	The We	ak Effective Hamiltonian in the MSSM .	139
		3.4	Soft Col	linear Effective Theory(SCET)	146
		3.5	$B \to \pi\pi$	within SUSY	171
		3.6	$B \to K$	K within SUSY	177
\mathbf{A}	CP Violation			182	
	1	Parity	Symmetr	ry	182
	2	Charge	e Conjuga	ation Symmetry	184
В	CP-	averag	ed bran	ching ratio for 2-Body decays	189
\mathbf{C}	Wi	lson co	efficient	ts	193
Bi	Bibliography			204	

List of Figures

1.1	Typical verticies and physical processes due to the elec-	
	tromagnetic interactions	18
1.2	Interaction vertices of the QCD Lagrangian	29
1.3	The Higgs potential $V(\phi)$	32
1.4	The potential $V(\phi)$ for a complex scalar field	35
1.5	Radiative corrections to the Higgs mass	57
2.1	Example of flavor-changing neutral current	66
2.2	The unitarity triangle, and the definitions of the angles	116
3.1	The effective vertex	131
3.2	Diagrams for the transition $b \to s\gamma$	136
3.3	Penguin diagrams for $\Delta B = 1$ transitions with chargino	
	$(\chi_{\rm I}^+)$ exchanges at the first order in mass insertion	141
3.4	Penguin diagrams for $\Delta B = 1$ transitions with gluino	
	exchanges at the first order in mass insertion	142
3.5	Box diagrams for $\Delta B = 1$ transitions with gluino ex-	
	changes at the first order in mass insertion	142
3.6	Box diagrams for $\Delta B = 1$ transitions with chargino	
	exchanges at the first order in mass insertion	143
3.7	A matching calculation which shows how W appears $\ .$	157
3.8	$R_{00}^{\pi\pi}$ relations	175
3.9	Direct CP asymmetry of $B^0 \to \pi^+\pi^-$	176

3.10	Direct CP asymmetry of $B^0 \to \pi^0 \pi^0$	176
3.11	Branching ratio of $B^0 \to K^+K^-$	179
3.12	Branching ratio of $B^0 \to K^0 \bar{K}^0$	179
3.13	Direct CP asymmetry of $B^0 \to K^+K^-$	180
3.14	Direct CP asymmetry of $B^0 \to K^0 \bar{K}^0$	181
A.1	Mirror processes	184
A.2	C, P and CP transformed processes	186
B.1	Kinematic description in the CM frame of the decay of	
	a particle P into two final particles	190

List of Tables

1.1	The fundamental interactions and their properties	14
1.2	Electroweak Quantum Numbers	52
2.1	Chiral supermultiplets in the Minimal Supersymmetric	
	Standard Model	77
2.2	Gauge supermultiplets in the Minimal Supersymmetric	
	Standard Model	78
2.3	Counting of real degrees of freedom in the Wess-Zumino	
	model	83
3.1	Scaling of different momenta modes and their corre-	
	sponding fermion fields	151
3.2	Hard kernels for $\Delta S=1$ decays of B^-, \bar{B}^0 and \bar{B}^0_s into	
	some final states	166
3.3	Hard functions for the chiraly enhanced amplitudes for	
	\bar{B}^0 and B^- decays to some $K\pi$ channels	172
3.4	Branching ratios and CP asymmetries of $B \to \pi\pi$ decay	
	modes	173
3.5	Branching ratios and CP asymmetries of $B \to KK$ de-	
	cay modes	177

 ${\bf Acknowledgements}$

Acknowledgements

I am thankful to Allah, by the grace of whom the progress of this work was possible. I wish also to express my gratefulness to Prof. Amira, Head of Physics Department for her support to facilitate the regulations and her encouragement and guidance.

I would like to express deep thanks to my supervisor Prof. Hala Mahmoud Khalil for suggesting the problem, stimulating discussion and valuable encouragement during the course of this work.

I would like to express my sincere gratefulness to Prof. Mostafa Shalaby, for his time and scientific guidance during the course of this thesis.

My Sincere thanks to my supervisor Dr. Tarek Awwad for his support, his advice, guidance.

My Sincere thanks to my supervisor Dr. Gaber Faisel for assisting the knowledge I need for this work, for his support, his guidance.

I wish also to express my gratefulness for the members of the Physics Department.

My gratitude and thanks to my husband who offered me the advice, help, hope and support to establish this work. Of course, I am most grateful to my parents for their patience, support and encouragement. Also, my heartfelt thanks are to my sister, my brother and all my friends for supporting me whenever i needed some support.

Last but not least, I would also like to thank my twins for their love and hope in my life.

Summary

Summary

During the twentieth century, remarkable progress was made in particle physics both experimentally and theoretically, which led to a great triumph "The Standard Model" (SM). However, we consider the Standard Model as an approximation of a more fundamental theory at low energies, since there are so many unexplained issues in SM, as charge conjugation parity (CP) violation.

Supersymmetry (SUSY) is one of the most interesting candidates for physics beyond the SM. In supersymmetric extensions of the SM there are additional sources of CP violation. We studied the CP violation in the mesonic(B) decay processes. we analyze the SM and supersymmetric contributions to CP-averaged branching fractions and the direct asymmetry of $B \to \pi\pi$ and $B \to KK$ processes within the framework of soft collinear effective theory (SCET). SCET provides a systematic and rigorous approach to deal with the processes where several energy scales are exist.

For branching ratios of $B \to \pi\pi$ processes we found that:

(i) In the frame work of SM, there is an agreement with the experimental range.

For CP-averaged branching fractions of $B\to\pi\pi$ processes we found that:

(i) Within the scenario S4 of quantum chromodynamics factorization (QCDF) and the SCET formalism, the predicted $R_{+-}^{\pi\pi}$ are in agreement with the experimental range.

- (ii) Within the scenario S4 of QCDF and the SCET formalism, the predicted $R_{00}^{\pi\pi}$ are still much lower than the data. On the other hand, the perturbative quantum chromodynamics (pQCD) predictions are even worse no matter the next-leading order (NLO) corrections are included or not.
- (iii) Motivated by the small prediction of the SM to the branching ratios, we study SUSY contribution to $R_{00}^{\pi\pi}$ using SCET formalism considering two scenarios. SUSY contributions can enhance $R_{00}^{\pi\pi}$ to be in the experimental range.

For direct asymmetry of $B \to \pi\pi$ processes we found that:

- (i)In the framework of SM, the predicted CP asymmetry are still much lower than the data for $B \to \pi^+\pi^-$ and $B \to \pi^0\pi^0$ processes. But their is no prediction of the CP asymmetry of $B \to \pi^-\pi^0$. This can be attributed to the absence of the charm penguin contribution to $B \to \pi^-\pi^0$ which is the source of the strong phase at the leading order in α_s expansion.
- (ii) Motivated by the small prediction of the SM to the CP asymmetries, we study SUSY contribution to the CP asymmetries using SCET formalism. we find the values of the two asymmetries exceed their values in the SM. It should be noted also that the asymmetries in the case of SUSY still not satisfy the experimental measured asymmetries.

For branching ratios of $B \to KK$ processes we found that:

(i)In the framework of SM, there is an agreement with the experimental range for $B \to K^+K^-$ process. But for $B \to K^0\bar{K}^0$ process, still there is not an experimental value measured for this process yet. It is expected that, within the running of the large hadron collider, these

quantities will be measured.

(ii) Including SUSY contributions of $B \to K^+K^-$ and $B \to K^0\bar{K}^0$ processes, SUSY contributions can enhance the branching ratio to be larger than prediction in the SM.

For direct asymmetry of $B \to KK$ processes we found that:

- (i)In the framework of SM, we get the values of them but their values are not yet measured experimentally. It is expected that, within the running of the large hadron collider, these quantities will be measured.
- (ii) Including SUSY contributions of $B \to K^+K^-$ and $B \to K^0\bar{K}^0$ processes, SUSY contributions can enhance the direct asymmetry to be larger than prediction in the SM.

In Conclusion, SUSY contributions can enhance both branching ratios and direct CP asymmetries.

Abstract

Abstract

Minkowski is the first who put the basis of the symmetry in high energy physics, which add the time coordinate dimension to the three place coordinates dimensions. Lorentz transformation is the mathematical formula for the special theory of relativity which was asymmetric with respect to the time and the place.

Minkowski used matrix 4×4 to explain the transformation from the inertial reference frame to another one and all of these frames move with constant speed with respect to each other.

Group theory is the mathematical tool to describe the symmetry. $U(1) \otimes SU(2) \otimes SU(3)$ is the suitable description to the Standard Model (SM). CP violation plays a privileged role in our quest for new physics beyond the electroweak Standard Model (SM).

Supersymmetry (SUSY) is one of the most interesting candidates for physics beyond the SM. In supersymmetric extensions of the SM there are additional sources of CP violation. We studied the charge conjugation parity (CP) violation in the mesonic(B) decay processes. we analyze the SM and supersymmetric contributions to CP-averaged branching fractions and the direct asymmetry of $B \to \pi\pi$ and $B \to K^0\bar{K}^0$ processes within the framework of soft collinear effective theory (SCET). SCET provides a systematic and rigorous approach to deal with the processes where several energy scales are exist.