ASSESSMENT OF THE EFFICACY OF HAPTOGLOBIN AS A DETECTOR FOR NEONATAL JAUNDICE

PROTOCOL OF THESIS
Submitted in partial fulfillment for
MSc. Degree in Pediatrics
By

DR.Shireen Amin Mohammed M.B.B.Ch Supervised by

DR. LAILA HUSSEIN MOHAMMED

PROFESSOR OF PEDIATRICS
Cairo University

DR.OLA ABD EL MENAM EL SISYPROFESSOR OF CLINICAL PATHOLOGY
Cairo University

DR.MAY AHMED KHAIRYASSISTANT PROFESSOR OF PEDIATRICS
Cairo University

Faculty of Medicine Cairo University 2011

Abstract

In this study, we tried to outline the causes of neonatal jaundice direct and indirect hyperbilirubinemia and how ignoring these cases and early hospital discharge may lead to significant jaundice leading to kernicteurs, we try to find a new precictor for neonatal jaundice and this where haptoglobin level which decreases in third day in neonates suffering fron neonatal jaundice.

Key words:

Neonatal jaundice, haptoglobin, kernicteurs.

PCKNOWLEDGEMENT

First of all, I should express my deep thanks to **Allah**, without his great blessing, I would never accomplish my work, and to whom I relate any success in achieving any work in my life.

I would like to express my sincere appreciation and deepest gratitude to **DR. LAILA HUSSEIN MOHAMMED** PROFESSOR OF

PEDIATRICS Cairo University, for her meticulous advice, continuous encouragement and valuable instructions all through this work.

It was a pleasure and privilege to work under her guidance and supervision.

Many thanks should be expressed to **DR.MAY AHMED KHAIRY**ASSISTANT PROFESSOR OF PEDIATRICSCairo University, for her help, honest assistance, active guidance and the precious time she had given in follow up the work of this study.

I am deeply grateful to **DR.OLA ABD EL MENAM EL SISY**PROFESSOR OF CLINICAL PATHOLOGY Cairo University, every word and every step in this work have been kindly arranged by her sincere effort, care and continuous encouragement. I learned a lot from her humanistic attitude, kind patience and thoughts.

Finally my truthful affection and love to **My Family,** always be, by my side all my life.

Contents

Subject	Page
List of Abbreviations.	I
List of Tables.	II
List of Figures.	III
Introduction.	1-3
Aim of the Work.	4
Review of Literature:	
Θ CHAPTER I:❖ Neonatal jaundice	5-44
Θ CHAPTER II:❖ Haptoglobin and hemopexin	45-51
Θ CHAPTER III:❖ Management of neonatal jaundice	52-67
Patients and Methods.	68-75
Results.	76-94
Discussion.	95-101
Summary.	102-104
Conclusion.	105
Recommendations.	106-107
References.	108-122
Arabic Summary.	123-129

List of Abbreviations

AAP American academy of pediatrics
ABE Acute bilirubin encephalopathy

BBB Blood brain barrier

BIND Bilirubin induced neurologic dysfunction

BVR Bilivirdin reductase CO Carbon monoxide

DNA Dineucleotide adenosine ETCO End tidal carbon monoxide

EX Exchange FT Full term

G6PD Glucose -6-phosphate dehydrogenase

HO Heme-oxygenase HP Haptoglobin

IgG Immune globulin G
IgM Immune globulin M

IVIG Intra venous immunoglobulin

NO Nitric oxide

NPV Negative predictive vaue

OD Optical density

PCR Polymeras chain reaction
PPV Positive predictive value

PT Preterm

RBCS Red blood cells

RES Reticulo endothelial system

RH Rhesus factor

ROS Reactive oxygen species

Sens Sensitivity
Spec Specificity

TSB Total serum bilirubin

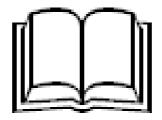
UDPGT Uridine diphosphate glucuronyl transferase

UTI Urinary tract infection XT Exchange transfusion

List of Tables

No.	Title	Page
1	Risk factors for hyperbilirubinemia	16
2	Causes of unconjugated hyperbilirubinemia	24
3	Clinical and laboratory features of immune hemolysis	30
	due to RH and ABO incompatibility	
4	Laboratory evaluation of jaundiced infants of 35 or	42
	more weeks gestation	
5	Risk factors for development of sever	54
	hyperbilirubinemia in infant of 35 or more weeks	
	gestational	
6	Follow up of newborns	55
7	Management of hyperbilirubinemia	56
8	American academy of pediatrics guidelines for	65
	management of hyperbilirubinemia	
9	Characteristics of studied newborns	77
10	Mode of feeding of studied neonates	79
11	Hematological indices of the studied newborn	80
12	Distribution of ABO and RH incompatibility among	81
	cases	
13	Distibution of jaundiced cases that required	82
	readmission	
14	Comparison between day 1 and day 3 haptoglobin	83
15	Comparison between haptoglobin and TSB on day 1	84
16	Comparison between haptoglobin and TSB on day 3	85
17	Relation between haptoglobin and hemoglobin on day 1	86

18	Comparison between haptoglobin and reticulocytic	87
	count	88
19	Sensitivity and specificity between haptoglobin and	00
	hemoglobin	0.0
20	Sensitivity and specificity between haptoglobin and	90
	reticulocytic count	0.1
21	Sensitivity and specificity between haptoglobin and	91
	TSB on day 1	93
22	Sensitivity and specificity between haptoglobin and	73
	TSB on day 3	


List of Figures

No.	Title	Page
1	Chemical structure of bilirubin	9
2	Bilirubin production	10
3	Metabolic pathway of degradation of heme and	11
	formation of bilirubin	
4	Amplification of neuro protective effect of bilirubin by	13
	redox cycling	
5	Bilirubin metabolism	13
6	Fetal bilirubin metabolism	15
7	Pathways of bilirubin synthesis, transport, metabolism	18
8	Causes of neonatal jaundice	20
9	Difference between RH and ABO incompatibility	27
10	Mechanism of sensitization in RH incompatibility and	27
	its prevention with anti D	
11	Erythroblastosis fetalis	29
12	Pentose phosphate pathway	32
13	Spherocytosis incompatibility with normal RBCS	32
14	Hereditary elliptocytosis	33
15	Newborn jaundice biology	52
16	Age-specific total serum bilirubin	53
17	Mechanism of phototherapy	57
18	Neonate on conventional and billi blanket phototherapy	58
19	Intensive phototherapy	59
20	Warmer lined with aluminum foil	60
21	Exchange transfusion in jaundiced neonate	64
22	Sex distribution among neonates	78

23	Mode of delivery among neonates	79
24	Mode of feeding among neonates	80
25	Correlation between haptoglobin and TSB on day 1	85
26	Correlation between haptoglobin and TSB on day 3	86
27	Correlation between haptoglobin and hemoglobin on	87
	day 1	
28	Correlation between haptoglobin and reticulocytic	88
	count on day 1	
29	Sensitivity and specificity between haptoglobin and	89
	hemoglobin	
30	Sensitivity and specificity between haptoglobin and	91
	reticulocytic count	
31	Sensitivity and specificity between haptoglobin and	92
	total serum bilirubin day 1	
32	Sensitivity and specificity between haptoglobin and	94
	total serum bilirubin day 3	

Introduction

INTRODUCTION

Jaundice is a frequently encountered problem during the newborn period. Although up to 60% of term newborns have clinical jaundice in the first week of life, few have a significant underlying diseases. However, it can be associated with severe illnesses such as hemolytic disease, metabolic and endocrine disorders, enzymatic deficiencies of the liver and infections (**Bilgen et al., 2006**).

A total serum bilirubin(TSB) level greater than 1 mg/dL (17 micromol/L) is encountered in almost all newborn infants, which is the upper limit of normal for adults. As the TSB increases, it produces neonatal jaundice, the yellowish discoloration of the skin and/or sclerae caused by bilirubin deposition (**Dennery et al., 2001**).

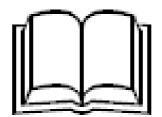
Neonatal jaundice accounts for up to 75% of hospital readmissions in the first week after birth (**Porter & Dennis, 2002**).

The causes of neonatal hyperbilirubinaemia are numerous, and may include: bilirubin overproduction which occurs in haemolytic diseases with either positive Coombs test (ABO incompatibility, Rhesus incompatibility, and minor bloodgroup antigens) or negative Coombs test (red blood cellmembrane defects, e.g. spherocytosis, elliptocytosis, and/or red blood cell enzyme defects, such as glucose-6-phosphate dehydrogenase [G6PD] and pyruvate kinase deficiencies) (**Porter & Dennis**, 2002).

The management of unconjugated hyperbilirubinemia focuses on two key elements, prevention of hyperbilirubinemia in order to prevent future cases of kernicterus, by identifying at risk infants and initiation of preventive therapeutic interventions (e.g., phototherapy) as needed and reduction of TSB in infants with severe hyperbilirubinemia (**Bhutani et al., 1999**).

kernicterus occurs in term or nearterm infants with hyperbilirubinemia, defined as TSB >95th percentile for hours-of-age on the Bhutani nomogram (**A.A.P.**, **2004**).

Prevention of hyperbilirubinemia can be done by universal screening of all term and nearterm infants which identifies at-risk infants for hyperbilirubinemia. In these patients, phototherapy is initiated to prevent hyperbilirubinemia when TSB exceeds a threshold level based upon a nomogram of TSB levels adjusted by the infant's age in-hours and the presence or absence of additional risk factors (**Bhutani et al.**, 1999).


Hemolysis has a significant role in bilirubin increase in newborn, intrauterin it is tolerated by the maternal metabolism in life. When hemolysis takes place, a decrease is expected in the haptoglobin and haemopoexin blood levels binding hemoglobin, it may be considered that haptoglobin and haemopexin from the early period umbilical cord blood may be indicators in determining jaundice likely to develop in late stages (Cakmak et al., 2008).

AIM OF THE WORK

The aim of the study is to determine if low umbilical cord and third day postnatal, serum haptoglobin levels can be predictors of neonatal jaundice.

Review of Literature

