VALUE OF MAGNETIC RESONANCE IMAGING IN DIAGNOSIS OF OVARIAN TUMORS

Essay

Submitted for the partial fulfillment of the master degree in

Radiodiagnosis

By Angie Salem Sadek Hasan Fawzy M.B.B.Ch.

Supervised By

Prof. Dr. Aida Mohamed El-Shibiny

Professor Of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Amir Louis Louka

Lecturer of Radiodiagnosis
Faculty of medicine, Ain shams university

Faculty of Medicine Gin Shams University

2011

دور التصوير الطبي بالرنين المغناطيسي في تشخيص أورام المبيض

رسالة توطئة للحصول علي درجة الماجستير في الأشعة التشخيصية

> مقدمة من أنجي سالم صادق حسن فوزي

> > تحت إشراف

الأستاذ الدكتور/ عايدة محمد الشبيني أستاذ الأشعة التشخيصية كلية الطب - جامعة عين شمس

دكتور/ أمير لويس لوقا مدرس الأشعة التشخيصية كلية الطب - جامعة عين شمس

كلية الطب

SUMMARY

Ovarian carcinoma is an insidious disease, and patients often present with an advanced (extra pelvic) stage of disease. Despite clinical advance and improved surgical techniques, it remains the deadliest form of gynecologic malignancy.

The primary goal of imaging in the evaluation of an adnexal mass is to differentiate malignant and benign diagnoses in order to direct patients to the appropriate treatment algorithm.

Magnetic resonance (MR) imaging has been proved useful for characterizing benign and malignant ovarian tumors; moreover, it enables a specific diagnosis to be made for certain pathologic types. For example, MR imaging is well known to provide accurate information about hemorrhage, fat, and collagen.

Gadolinium-enhanced MR imaging serves as a problem-solving modality in cases of indeterminate adnexal masses. A combination of T1-weighted images and T1-weighted images with fat saturation helps to differentiate most common benign adnexal masses from malignant ones.

جامعة عين شمس 2011

Contents

	Page
Introduction	1
Aim of the work	4
Anatomy of the Ovaries	5
Pathology Of Ovarian Cancer	17
MRI techniques used in female adnexa (ovarian tumors)	40
Value Of MRI In Diagnosis Of Ovarian Tumors	78
Summary	142
References	145
Arabic summary	

List of Tables

Table No.	$\it Title$	Page
1	WHO histologic classification of ovarian tumors	20
2	Features that Help Differentiate Serous from Mucinous Tumors	23
3	FIGO and TNM staging systems for ovarian cancer	39
4	Sequence parameters at different field strengths and P-value	52
5	Scheme for the interpretation of diffusion-weighted MR imaging findings	54
6	Metabolites Detected with Proton MR Spectroscopy	61
7	Strategy for diagnosis of ovarian masses with MRI imaging	81
8	Features that suggest either Benign or Malignant Epithelial Neoplasms	83

List of Tables (Cont..)

Table No.	Title	Page
9	Features that Help Differentiate Serous from Mucinous Tumors	86
10	Patterns of USPIO uptake in benign lymph nodes at MR lymphography (MRL) and respective interpretations of	
	these patterns	138
11	Patterns of USPIO uptake in metastatic lymph nodes at M lymphography (MRL) and respective	
	interpretations of these patterns	140

List Of Figures

Figure No.	Title	Page
1	Ovarian ligaments	9
2	Histology of the ovary	9
3	Blood supply of the ovary	11
4	Gynecologic MRI, multiple sequences, showing normal ovary	16
5	Gynecologic MRI	16
6	Origins of the three main types of ovarian tumors	19
7	Fat saturation	45
8	Schematic illustrates water molecule movement	49
9	Diffusion-weighted MR imaging at 3.0T vs 1.5T. Breath-hold single-shot echoplanar MR images obtained with parallel imaging	50
10	A simplified approach to lesion characterization by using visual assessment with b of 0sec/mm ² and a higher b value and ADC maps	54

Figure No.	Title	Page
11	T2 shine-through in a 42-year-old woman with a small cyst in the left hepatic lobe	55
12	Diagram shows metabolite frequency relative to water frequency	59
13	Planning MR lymphography	66
14	Vertically open 0.5-T MR unit with double-doughnut design	68
15	Malignant inguinal node in a 47-year- old patient with vulvar cancer	69
16	Increased conspicuity of a hepatocellular carcinoma at 3.0T compared with 1.5T. The 3.0-T examination was performed 1 month before the 1.5-T examination	71
17	Diffusion-weighted MR imaging at 3.0T vs 1.5T	73
18	Field inhomogeneity and standing wave effects	75

Figure No.	Title	Page
19	Motion artifact and susceptibility effect.	77
20	Serous cystadenoma in a 44-year-old woman	84
21	Mucinous cystadenoma in an 83-year- old woman	87
22	Mucinous cystadenocarcinoma in a 72-year-old woman	87
23	Confluent bilateral ovarian endometrioid carcinoma, which was not appreciated bilaterally at MR imaging in a 51-year-old-woman	88
24	Clear cell carcinoma in a 59-year-old woman	89
25	Brenner tumor in a 70-year-old woman	91
26	Adult GCT in a 68-year-old woman	94
27	Fibrothecoma complicated with torsion in a 69-year-old woman. a Sagittal T2-weighted magnetic resonance (MR) image	95

Figure No.	Title	Page
28	Sertoli-Leydig cell tumor in a 23-year- old woman	97
29	41-year-old woman with steroid cell tumor	98
30	38-year-old woman who presented with pure primary ovarian choriocarcinoma	101
31	Dysgerminoma in a 16-year-old girl	102
32	Dermoid cyst in a 16-year-old girl	104
33	Immature teratoma in a 28-year-old woman	104
34	Bilateral Krukenberg tumors from gastric carcinoma in a 38-year-old woman	106
35	24-year-old woman with relapsed acute lymphocytic leukemia	107
36	Schematic for characterizing ovarian masses is based on MRI features	108

Figure	Title	Page
No.		
37	MRI shows direct uterine invasion. Axial T2-weighted MR images	111
38	Bilateral ovarian serous cystadeno- carcinoma sagittal T2 weighted fast spin echo MR image demonstrates a large complex cystic and solid mass surrounded by ascitis and perotineal nodules	111
	iloudies	111
39	Serous carcinoma in a 40-year-old	
	woman. Axial T2-weighted	113
40	Implant on the liver capsule	113
41	Mature cystic teratoma of the right	
	ovary in a 19-year-old pregnant woman.	116
42	A 68-year-old woman with mature cystic teratoma of the ovary	118
43	A 53-year-old woman with endometriosis- associated endometrioid adenocarcinoma of the ovary	120
44	A 60-year-old woman with fibroma of the ovary	121

Figure No.	Title	Page
45	Bilateral ovarian metastases from a well-differentiated endocervical adenocarcinoma.	122
46	Proton MRS in cases of malignant and benign ovarian tumor	124
47	Proton MRS in a case of clear cell carcinoma (TR= 1300msec, TE= 135msec)	126
48	MRS in a case of thecoma (TR= 1300msec, TE= 135msec)	127
49	Proton MRS without water suppression in a case of dermoid cyst (TR= 1300msec, TE= 135msec)	128
50	Proton MRS in case of serous cystadenofibroma (TR= 1,500ms, TE= 136ms)	129
51	Advanced endometrial carcinoma in a 70-year-old woman with significant restriction to water diffusion	131
52	Benign obturator node. Axial precontrast T2-weighted fast spin-echo image	134

Figure No.	Title	Page
53	Benign inguinal node with fatty hilum	136
54	Blooming artifact in a 26-year-old patient with adenosquamous carcinoma of the cervix	137
55	Benign external iliac node. Axial precontrast T2-weighted fast spin-echo image	139
56	Malignant obturator node	141

Ovarian tumors are the leading indication for gynecological surgery. The main goal of imaging techniques in this setting is to identify tumors that are likely to be malignant in combination with clinical findings. Indeed, preoperative characterization of ovarian tumors is crucial to inform women on the risks associated with radical and conservative treatment and to determine the surgical route (*Curtin, 1994*).

NTRODUCTION

Although TVUS is the first imaging technique used to investigate suspected pelvic masses, it has a limited capacity for tissue characterization. Regarding MRI, In addition to morphological characteristics, many tissue parameters such as T₁, T₂, Perfusion, and Diffusion contribute to signal intensity. Therefore, MRI is able to identify various types of tissues contained in pelvic masses. Hence, MRI helps to locate large solid masses and to distinguish benign from malignant ovarian tumors, with an overall accuracy of 88% to 93% for the diagnosis of malignancy (*Bazot et al., 2008*).

MRI contributes to the characterization of adnexal masses based on criteria highly suggestive of

benignity (e.g., fatty components, shading on T₂weighted images) (Kinkel et al., 2005) or malignancy (e.g., vegetations and solid portions within cystic masses) (Brown et al., 2001).

[T2-weighted Fast Spain Echo (FSE)], is the only which visualizes the normal parenchyma, so preoperative location of the normal ovarian parenchyma could facilitate laparoscopic ofthe cystectomy with conservation normal parenchyma (Bazot et al., 2000).

The diagnostic accuracy with contrast-enhanced MR imaging is better than that with precontrast MRI imaging or TVUS because of its ability to demonstrate internal details and soft tissue contrast (Yamashita et al., 1995).

The appearance of blood and lipid in ovarian tumors is sufficiently different on lipid- and water allows suppression MR images and an accurate distinction between the two. The two techniques should be useful in the differential diagnosis of lesions that appear isointense on routine MRI (Kier et al., 1992).

MRI is a cost-effective next step when the results of the US evaluation are indeterminate. MR