Study of Innate Immunity and Natural Killer T Cells (NK T) in Hepatitis C Virus (HCV) Infection

Thesis

Submitted for Partial Fulfillment in Master

Degree in Internal Medicine

By Naglaa Taher Gad

M.B., B.Ch Faculty of Medicine, AL-Azhar University

Under Supervision of

Prof. Dr. Fawzia Hassan Abo Ali

Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine, Ain Shams University

Prof. Dr. Iman Hussein Shehata

Assistant Professor of Microbiology Faculty of Medicine, Ain Shams University

Dr. Mohamed Nazmy Farres

Assistant Professor of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2011 دراسة المناعة الذاتية وخلايا القتل الطبيعية التائيه في عدوي التهاب الكبد الفيروسي (سي)

رساله توطئة للحصول على درجة الماجستير في الباطنة العامة

مقدمة من الطبيبة / نجلاء طاهر جاد بكالوريوس الطب والجراحه – جامعة الازهر

تحت إشراف

الأستاذة الدكتورة/ فوزية حسن ابو على أستاذ أمراض الباطنة العامة والحساسية والمناعة الاكلينيكيه كلية الطب - جامعة عين شمس

الأستاذة الدكتورة/ إيمان حسين شحاتة

أستاذ مساعد علم الكائنات الدقيقة كلية الطب - جامعة عين شمس

الدكتور/ محمد نظمى فارس

أستاد مساعد أمر اض الباطنة العامة والحساسية والمناعة الاكلينيكيه كلية الطب - جامعة عين شمس

> كلية الطب - جامعة عين شمس 2011

SUMMARY

The current work was done in order to study the crucial role of Natural Killer cells and Natural Killer T cells in pathogenesis of HCV infection comparing to healthy control.

The present study was conducted on 30 non-diabetic adult patients with chronic HCV infection, who were recruited from the Internal Medicine and Hepatology outpatient clinics at Ain Shams University Hospital. They included 18 males and 12 females. The age of the patients ranged from 27 to 52 years. All patients had been previously diagnosed with chronic hepatitis due to HCV infection, and were seropositive for HCV antibodies, and positive for HCV-RNA by PCR. Chronic hepatitis was diagnosed by the presence of elevated ALT levels for at least the past 6 months, in addition to liver biopsy, which was performed for all patients as part of their routine workup at the clinic.

For all included cases full medical history was taken, clinical examination was done together with (liver functions, kidney functions, Hb%, and fasting blood sugar and 2 hour post prandil and Triglycerides).

The result of the present study showed that there is a decrease in NK cells & NK T cells in HCV patient (CD3-& CD56+) NK and (CD3+&CD56+) NKT and subsets in peripheral blood Compared to healthy control,

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	
■ Hepatitis C Virus (HCV)	4
■ Innate Immunity	43
Natural Killer Cells	54
Natural Killer Cells and HCV Infection	63
Patients and Methods	75
Results	79
Discussion	99
Summary	105
Conclusion	106
Recommendations	107
References	108
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	HCV proteins and their functions in the life cycle	
Table (2):	Importance of different exposures to I transmission patterns in low, moderate high prevalence areas worldwide	and
Table (3):	Sex distribution among cases and controls.	79
Table (4):	Age distribution among cases and controls	80
Table (5):	Comparison between cases and control regards liver function test ALT	
Table (6):	Comparison between cases and control regards liver function test AST	
Table (7):	Comparison between cases and control regards liver function test total bilirubin	
Table (8):	Comparison between cases and control regards liver function test Albumin	
Table (9):	Comparison between cases and control regards lipid profile Triglyceride	
Table (10):	Comparison between cases and control regards lipid profile Cholesterol	
Table (11):	Comparison between cases and control regards platelet count	
Table (12):	Comparison between cases and control regards hemoglobin level.	
Table (13):	Comparison between cases and control regards WBCS count	s as
Table (14):	Comparison between cases and control regards kidney function test serum creating	

List of Tables (cont...)

Table No.	Title	Page No.	
Table (15):	Comparison between cases and control regards Fasting blood sugar		91
Table (16):	Comparison between cases and control regards the frequency of peripheral Na Killer cells.	ıtural	. 92
Table (17):	Comparison between cases and control regards Natural Killer T cells (NKT)		. 93
Table (18):	Correlation between Natural Killer cells other parameter (laboratory criteria) ar cases	nong	. 94
Table (19):	Correlation between Natural Killer T cells other parameter (laboratory criteria) ar cases.	nong	. 95
Table (20):	Sensitivity, specificity, between cases controls as regards NK cell percentages		. 95
Table (21):	Sensitivity, specificity between cases controls as regards Natural Killer T percentages	cell	. 97

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Kinetics and possible partial cleavage produ HCV polyprotein processing	
Fig. (2):	Organization of Flaviviridae genomes	11
Fig. (3):	HCV viral particle produced in a tissue of system from a cloned viral genome	
Fig. (4):	HCV genome organization (top) and polyp processing (bottom)	
Fig. (5):	Hypothetical HCV replication cycle	32
Fig. (6):	Triggering the host response to HCV infection	on 45
Fig. (7):	Signaling the host response to HCV infection	n46
Fig. (8):	a) The innate immune induction pathrough RLR activation. (b) The RLR members	family
Fig. (9):	Domains of the HCV genome featuring NTR	the 3'
Fig. (10):	Modulation of innate immunity during he C virus (HCV) infection.	
Fig. (11):	CD16+ CD8 T cells are expanded in pawith chronic HCV infection	
Fig. (12):	Sex distribution among cases and controls	79
Fig. (13):	Age distribution among cases and controls.	80
Fig. (14):	ALT level among cases and controls	81
Fig. (15):	AST level among cases and controls	82
Fig. (16):	Total bilirubin level among cases and contro	ols 83
Fig. (17):	Albumin level among cases and controls	84
Fig. (18):	Triglyceride level among cases and controls.	85
	List of Figures (cont.)	

List of Figures (cont...)

Fig. No.	Title	Page No.
Fig. (19):	Cholesterol level among cases and controls.	86
Fig. (20):	Platelet count among cases and controls	87
Fig. (21):	Hemoglobin level among cases and controls	s 88
Fig. (22):	WBCS count among cases and controls	89
Fig. (23):	Creatinine level among cases and controls	90
Fig. (24):	Fasting blood sugar levels among case controls.	
Fig. (25):	Natural killer cells among cases and control	s 92
Fig. (26):	NKT cells among cases and controls	93
Fig. (27):	ROC curve for NK cell percentages to determine the optimum cut-off levels for diagno chronic hepatitis C	sis of
Fig. (28):	Natural Killer cells (NK) show sensitive 56.7% and specificity of 85.0% at a cut of <= 5.5%	it –off
Fig. (29):	ROC curve for NKT cell percentag determine the optimum cut-off level diagnosis of chronic hepatitis C	s for
Fig. (30):	Natural Killer T cells show Sensitivity specificity 100%, at a cut-off of <=3.1%	
Fig. (31):	ROC curve for NK and NKT cell percental determine the optimum cut-off level diagnosis of chronic hepatitis C	s for

List of Abbreviation

Abbr.	Details
Ad	Adenovirus
ADCC	Ab-dependant cellular cytotoxicity
ALIX	Apoptosis linked gene interacting protein x
ASGP-P	Asialoglycoprotein receptors
CHMP	Charged multivesicular body protein
CMV	Cytomegalo virus
DCs	Dendritic cells
DC-SIGN	The dendritic cell-specific intracellular adhesion molecule-
	grabbing nonintergrin
DsRNA	double stranded RNA
$oldsymbol{E}$	Envelope
E R	Endoplasmic reticulum
ESCRT	Endosomal storing complex required for transport
HAART	Highly active anti viral therapy
HCC	Hepatocellular carcinoma
HCV	Hepatitis c virus
HCW	Health care worker
HIV	Human immunodeficiency virus
HLA-C	Human leucocytic antgin –c
HSPG	Heparan sulfate proteoglycans
HVR	Hypervariable region
ICAM	Intercellular adhesion molecule-
IEM	Immuno EM
IFN	Interferon
IRF	Interferron regulator factor
ISGs	Interferon stimulated genes
ISRE	Interferon stimulated responce element
JFHI	Japanese patient fulminant hepatitis
KIR	Killer immunoglobin receptor
LDL-R	The low-density lipoprotein receptors
LEL	large extracellular loop
МНС	Major histocompitability complex
MTCT	mother –to- child transmission
NK	Natural killer cells
NKT	Natural killer T cells
NF-kB	Nuclear factor kappa B
NKR	Natural killer cell receptors
NS	Non-structural protein

NTR	Nontranslated region
P	protein no
PAMP	Pathogen –associated molecular pattern
PAT	Parenteral anti-schistosomiasis treatment
PBMCS	Perpheral blood mono nuclear cells
PEG-IFN	Pegylated-interferon alfa
alfa	
PRD	Positive regulatory domain
PRR	Pattern recognition receptors
PRR	Pattern recognition reseptor
QS	Quasispecies
RBV	Ribavirin
RD	Repressor domain
RF	Rplicative form
RI	Replicative intermediate
RLR	Rig-like receptors
SEL	Small extracellular loop
SFV	Semiliki forest virus
SL	Stem –loop structures
SR-BI	Scavenger receptor B type
STAT	Singl transducer activator of transcription
STDS	Sexually transmitted disease
SVR	Sustained virological responce
TCR	T cell receptors
TGF	Transforming growth factor
TLR	Toll like receptors
TM	Transmembran
TNF	Tumor necrosis factor
TSG	Tumor susceptibility gene
UTR	Untranselated region
VAP-A	Vesical-associated membrane protein-associated protein A
VAP-B	Vesical-associated membrane protein-associated proteinB
VRE	Virus responsive element
VSV	Vesicular stomatitis virus

INTRODUCTION

epatitis C virus (HCV) has assumed the proportion of a global pandemic. Approximately 170 million people are infected world-wide with this virus. The role of innate immune response in hepatitis C virus (HCV)-related chronic liver disease in controversial and poorly under stood (Lauer and Walker, 2001).

Natural Killer (NK) and Natural killer T (NKT) cells are an important antiviral effector population eliminating virus through direct killing and cytokine production. Like many other viruses, HCV has evolved strategies to evade detection and elimination by NK cell (Ali and Fernando, 2004).

Natural Killer (NK) cells may be impaired in patients with persistence hepatitis C virus (HCV) infection, but studies to date have yielded inconsistent findings due to patient and virus heterogeneity and difficulties obtaining appropriate controls (Colucci et al., 2003).

Altered NK and NKT cell function may contribute to impaired cellular immune responses and chronicity of the disease following HCV infection. Natural Killer (NK) cells play a crucial role in limiting the severity of disease caused by a range of viruses (*Dolganiuc et al.*, 2006).

They usually become activated in an early phase of viral infection. Liver is particularly enriched in NK cells, which are activated hetero hepatic viruses such as hepatitis C virus. The

activated NK cells play an essential role in recruiting virusspecific T cells and in inducing antiviral immunity in liver, optimally activated NK cells are important in limiting viral replication in this organ. Paradoxically, NK cell, too act as a double-edged sword and might contribute toward pathogenesis and cause liver damage by killing hepatocytes and by secreting proinflammatory cytokines (Crotta et al., 2002).

They also eliminate virus infected hepatocytes directly by cytolytic mechanisms and indirectly by secreting cytokines, which induce an antiviral state in host cells. Therefore, optimally activated NK cells are important in limiting viral replication in this organ (*Lucy et al.*, 2008).

Further studies are needed to understand the role of these cells in host defense and liver pathology in infections. Recent advances in understanding NK cell biology have opened new avenues for boosting innate and adaptive antiviral immune responses in HCV-infected individual (Tseng and Klimpel, 2002).

AIM OF THE WORK

The aim of this work is to study the crucial role of Natural Killer cells and Natural Killer T cells in pathogenesis of HCV infection.

HEPATITIS C VIRUS (HCV)

Definition:

Hepatitis C virus (HCV) is a member of *Flaviviridae* that contains a 9.6-kb positive-sense RNA genome. Chronic infection with HCV is a major cause of liver cirrhosis and hepatocellular carcinoma (*Sarbah and Younossi*, 2000 and *Ariumi et al.*, 2011).

The tropism of HCV is limited to chimpanzees and humans, and the mechanism of HCV infection and replication is not fully understood (*Yoshida et al.*, 2011).

Epidemiology:

A total of 170-million people worldwide are infected with HCV, leading to chronic hepatic inflammation, hepatic fibrosis, hepatic cirrhosis and hepatocellular carcinoma (*Bernini et al.*, 2011).

Hepatitis C virus (HCV) is a major cause of chronic liver disease in both children and adults worldwide (*Wasley and Alter, 2000*). Since the advent of universal screening of blood products, mother-to-child transmission (MTCT) has become the major route of HCV infection in children (*Indolfi and Resti, 2009*). It is estimated that 10,000–60,000 newborns worldwide are infected with HCV by MTCT each year (*Yeung et al., 2001 and Babik et al., 2011*).

The rate of MTCT from HCV-seropositive, HCV RNA-positive women is 4%-6% and transmission occurs almost

exclusively from women who are viremic (*Indolfi and Resti*, 2009).

Prevalence in Egypt

The national prevalence of HCV infection in Egypt was estimated by conducting a nation-wide survey in 1993 to estimate the prevalence of HCV infection among blood donors (*Morcos et al., 2010*). 2644 samples were obtained from 24 of 26 governorates, and the prevalence was found to be 24.8%. The prevalence of infection in the different governorates of Egypt was also calculated by *Fallahian and Najafi (2011)* by combining two studies.

Seroprevalence of hepatitis C virus in the urban blood donor population was 14.5%, while the seroprevalence was 70.4% in HD patients, 7.7% in health care workers, and 75.6% in thalassemic children. Schistomiasis does not seem to play a role in the seroprevalence of this disease in Egypt (*Mohamed et al., 1996*). Moreover, HCV was found in 12.1% of rural primary school children, 18.1% of residents in rural villages, 22.1% of army recruits, 16.4% of children with hepatosplenomegaly, 54.9% of hospitalized multitransfused children, 46.2% of adults on HD, and 47.2% of adults with chronic liver disease or hepatoma (*Youssef et al., 2009*).

A consistent increase of seropositivity for HCV antibodies with age was observed, with a peak level of 54.9% in all individuals for the age group 45-49 years. Analysis revealed that age, male sex, marriage, rural residence, living in upper and lower Egypt, injections for bilharziasis and urography were