



# A Comparative Chemical Study Of The Bioactive Secondary Metabolites Isolated from Red Sea Organisms And The Associated Fungi

A Thesis Submitted to

Faculty of Pharmacy – Ain Shams University

In Partial Fulfillment of the Requirements
for the PhD Degree in Pharmaceutical Sciences

(Pharmacognosy)

#### Ву

### **Ahmed Mohamed Essam El-Din**

Assistant lecturer of Pharmacognosy
Faculty of Pharmacy, Ain Shams University
B.Pharm.Sci (2006)

M.Pharm. Sci (2012)

Faculty of Pharmacy-Ain Shams University
Abbassia, Cairo, A.R.E.

2017





#### **Under the Supervision of**

# Prof. Dr./ Abdel-Nasser B. Singab

Professor of Pharmacognosy

Vice president of Ain Shams University for Postgraduate studies

# Assoc. Prof. Dr./ Mohamed L. Ashour

Associate Professor of Pharmacognosy
Faculty of Pharmacy- Ain Shams University

# Assoc. Prof. Dr./ Sherif S. Ebada

Associate Professor of Pharmacognosy

Faculty of Pharmacy- Ain Shams University

First of all, I would like to extend due praise and thanks to **ALLAH**, the source of all knowledge, for granting me the chance and the ability to successfully accomplish this study.

I would like to express my greatest gratitude and heartfelt appreciation to *Prof. Dr. Abdel Nasser B. Singab*, Prof. of Pharmacognosy, Vice president of Ain Shams University for Postgraduate Affairs, for his continuous guidance, valuable advice, patience and his comprehensive support, I would like to thank him for his due care to provide the necessary research facilities and his support to young researchers. I am indebted to him with every single word in this thesis as I am lucky to be his student. Thanks for setting an example to what a dedicated professor, scientist and advisor should be.

I would like to express my sincere and deep thanks to the members of the advisory committee *Assoc. Prof. Mohamed L. Ashour & Assoc. Prof. Sherief S. Ebada* department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for their continuous supervision throughout all the phases of this study, advice, patience, guidance, valuable comments and their due care to transfer their experience. Their friendly attitude always breaks the barriers, allowing the work to be accomplished interestingly in a healthy environment.

My special thanks to *Assoc. Prof. Mona F. El-Neketi*, department of Pharmacognosy, Faculty of Pharmacy, Mansoura University & *Assoc. Prof. Weaam Ebrahim* department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine Universität, for performing the isolation, purification and identification procedures for the fungus Eurotiomycetes sp. strain AV-221.

I would like to express my appreciation to *Assoc. Prof. Ahmed El-Khatib*, Department of Analytical Chemistry, Faculty of Pharmacy, Ain Shams University and Department of Chemistry Universität zu Berlin, for performing the necessary high resolution MS analyses.

My sincere appreciation to my colleague *Dr. Ahmed S. Abuzied*, Department of Microbiology, Faculty of Pharmacy, Ain Shams University, for performing the cytotoxicity assays.

My deep thanks and appreciation to my friend and colleague *Dr. Mohamed S. El-Naggar*, Department of Pharmacognosy, Ain Shams University, for participation in the procedures of culturing of the fungus *Arthrinium sp.* during his joint program at the Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine Universität.

I would like to thank the Egyptian Science and Technology Development Funds (STDF) for its financial support through grant No. 5251 entitled "Center for Drug Discovery and Development Research" for providing the necessary fund and facilities to complete this work

I am grateful to all staff members of Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, namely Assoc. Prof. Omayma El-Dahshan (Acting head of the Department), Assoc. Prof. Sherwit El-Ahmady, Assoc. Prof. Rola Milad, Assoc. Prof. Mohamed El-Shazly, Assoc. Prof. Eman Kamal and Assoc. Prof. Haidy Gad, Dr. Fadia, Dr. Iriny and Dr. Nada for their continuous help and encouragement. My thanks to the teaching assistants and my colleagues in the department of Pharmacognosy, Ain Shams University namely, Doaa, Naglaa, Mariam, Nouran,

#### Acknowledgements

Esraa, Heba, Amany, Aya, Maram, Salma, Martina and Youssra, for their continuous help and encouragement.

Finally I would like to thank my dearest great parents whom I really love and respect, I am proud to be their son, my sisters Hayam and Enam for their continuous care, love, support and believing in me always; thank you very much really I love you so much.

Ahmed M. Essam

2017

#### Table of contents

#### TABLE OF CONTENTS

| Content                                                                                 | page      |
|-----------------------------------------------------------------------------------------|-----------|
| List of figures                                                                         | i         |
| List of tables                                                                          | V         |
| List of abbreviations                                                                   | vii       |
| 1.Introduction                                                                          | 1         |
| 1.1.Significance of Natural products in drug discovery                                  | 1         |
| 1.2.Marine natural products                                                             | 3         |
| 1.3.Fungal metabolites                                                                  | 3         |
| 1.3.1.Endosymbiotic fungi                                                               | 5         |
| 2.Aim of work                                                                           | 7         |
| 3.Review of litrature                                                                   | 8         |
| 3.1.Genus Arthrinium                                                                    | 8         |
| 3.1.1.Secondary metabolites isolated from different isolates of <i>Arthrinium sp</i> .  | 8         |
| 3.2.Genus Sarcotragus                                                                   | 16        |
| 3.2.1.Secondary metabolites isolated from the marine sponge <i>Sarcotragus sp</i> .     | 16        |
| 3.3. Genus Avicennia                                                                    | 26        |
| 3.3.1.Secondary metabolites isolated from <i>Avicennia sp.</i> .                        | 26        |
| 4.Material and methods                                                                  | 38        |
| 4.1.Materials                                                                           | 38        |
| 4.1.1.Equipments                                                                        | 38        |
| 4.1.2.Chemicals                                                                         | 40        |
| 4.1.3.Biological material                                                               | 41        |
| 4.2.Methods                                                                             | 42        |
| 4.2.1.Isolation of the fungal endosymbionts from the host organism                      | 42        |
| 4.2.2.Cultivation of the pure fungal strains                                            | 43        |
| 4.2.3.Identification of the fungal strains                                              | 44        |
| 4.2.4.Isolation of secondary metabolites                                                | 47        |
| 4.2.5.Structure elucidation of the isolated compounds                                   | 54        |
| 4.2.6.Methods for cytotoxic evaluation using MTT assay                                  | 55        |
| 5.Results                                                                               |           |
| Chapter 1: Chemical investigation of the endosymbiotic fungus <i>Arthrinium sp</i> .    | <b>57</b> |
| Chapter 2: Chemical investigation of the endosymbiotic fungus Eurotiomycetes            | 126       |
| sp.strain AV-221                                                                        |           |
| <b>Chapter 3: Cytotoxic Evaluation of the isolated compounds from the endosymbiotic</b> | 173       |
| fungi Arthrinium sp. and Eurotiomycetes sp. strain AV-221                               |           |
| 5.1.Introduction                                                                        | 173       |
| 5.2.Cytotoxic evaluation of different compounds isolated from the endosymbiotic         | 176       |
| fungus Arthrinium sp.                                                                   |           |
| 5.3.Cytotoxic evaluation of different compounds isolated from the endosymbiotic         | 180       |
| fungus Eurotiomycetes sp. strain AV-221                                                 |           |
| 6.Disscussion                                                                           | 184       |
| 6.1.Dereplication techniques                                                            | 184       |
| 6.2.Metabolic pathways                                                                  | 186       |
| 6.2.1. Metabolic pathways in the host organisms                                         | 186       |
| 6.2.2. Metabolic pathways in the isolated fungi                                         | 187       |
| 6.3.Biological investigation                                                            | 189       |

#### Table of contents

| 6.4. Variation of metabolites among different strains of the same fungus | 190 |
|--------------------------------------------------------------------------|-----|
| English summary                                                          | 191 |
| References                                                               | 193 |
| Publications                                                             | 214 |
| Arabic summary                                                           |     |

| No. | Figure                                                                 | Page             |
|-----|------------------------------------------------------------------------|------------------|
| 1.  | Examples of naturally derived lead drug products                       | 2                |
| 2.  | Examples of synthetic products based on natural lead compounds         | 2                |
| 3.  | Examples of fungal derived metabolites in the market                   | 5                |
| 4.  | Examples of marine-derived fungal products with potential bioactivity  | 6                |
| 5.  | Scheme for secondary metabolites isolation from <i>Arthrinium sp</i> . | 52               |
| 6.  | Scheme for secondary metabolites isolation from Eurotiomycetes sp.     | 54               |
| 7.  | Isolated compounds from <i>Arthrinium sp</i> .                         | 57               |
| 8.  | NMR spectra of compound 1                                              | 61               |
| 0.  | a. H NMR spectrum of compound 1                                        | 61               |
|     | b.APT spectrum of compound 1                                           | 61               |
|     | c. COSY correlations compound 1                                        | 62               |
|     | d. HMBC correlations compound 1                                        | 62               |
| 9.  | NMR spectra of compound 2                                              | 65               |
| 7.  | a. <sup>1</sup> H NMR spectrum of compound 2                           | 65               |
|     | •                                                                      | 65               |
|     | b. APT spectrum of compound 2                                          | 66               |
| 10  | c. HMBC correlations of compound 2                                     |                  |
| 10. | ROESY correlations of compounds 1 and 2                                | 66               |
| 11. | NMR spectra of compound 3                                              | 69               |
|     | a. <sup>1</sup> H NMR spectrum of compound 3                           | 69<br><b>5</b> 0 |
|     | b. HSQC correlations of compound 3                                     | <b>70</b>        |
| 10  | c. HMBC correlations of compound 3                                     | 70               |
| 12. | NMR spectra of compound 4                                              | 108              |
|     | a. H NMR spectrum of compound 4                                        | 108              |
|     | b.APT NMR spectrum of compound 4                                       | 108              |
| 4.0 | c.COSY correlations of compound 4                                      | 108              |
| 13. | <sup>1</sup> H NMR spectrum of compound 5                              | 109              |
| 14. | NMR spectra of compound 6                                              | 109              |
|     | a. H NMR spectrum of compound 6                                        | 109              |
|     | b.APT spectrum of compound 6                                           | 110              |
|     | c.COSY correlations of compound 6                                      | 110              |
|     | d.HMBC correlations of compound 6                                      | 110              |
| 15. | NMR spectra of compound 7                                              | 111              |
|     | a. H NMR spectrum of compound 7                                        | 111              |
|     | b.COSY correlations of compound 7                                      | 111              |
|     | c.HSQC correlations of compound 7                                      | 111              |
| 16. | NMR spectra of compound 8                                              | 112              |
|     | a. H NMR spectrum of compound 8                                        | 112              |
|     | b.COSY correlations of compound 8                                      | 112              |
|     | c.HSQC correlations of compound 8                                      | 112              |
| 17. | <sup>1</sup> H NMR spectrum of compound 9                              | 113              |
| 18. | <sup>1</sup> H NMR spectrum of compound 10                             | 113              |
| 19. | <sup>1</sup> H NMR spectrum of compound 11                             | 114              |
| 20. | NMR spectra of compound 12                                             | 114              |
|     | a. H NMR spectrum of compound 12                                       | 114              |
|     | b.COSY correlations of compound 12                                     | 115              |
|     | c.HMBC correlations of compound 12                                     | 115              |
| 21. | NMR spectra of compound 13                                             | 115              |
|     | a. H NMR spectrum of compound 13                                       | 115              |
|     | b. APT spectrum of compound 13                                         | 116              |
| 22. | NMR spectra of compound 14                                             | 116              |
|     | a. H NMR spectrum of compound 14                                       | 116              |
|     | b.APT spectrum of compound 14                                          | 116              |

|     | c.COSY correlations of compound 14                              | 117 |
|-----|-----------------------------------------------------------------|-----|
|     | d.HMBC correlations of compound 14                              | 117 |
| 23. | <sup>1</sup> H NMR spectrum of compound 15                      | 117 |
| 24. | <sup>1</sup> H NMR spectrum of compound 16                      | 118 |
| 25. | NMR spectra of compound 17                                      | 118 |
|     | a. H NMR spectrum of compound 17                                | 118 |
|     | b.HSQC correlations of compound 17                              | 119 |
|     | c.COSY correlations of compound 17                              | 119 |
| 26. | NMR spectra of compound 18                                      | 120 |
|     | a. H NMR spectrum of compound 18                                | 120 |
|     | b.APT spectrum of compound 18                                   | 120 |
|     | c.HSQC correlations of compound 18                              | 121 |
|     | d.COSY correlations of compound 18                              | 121 |
|     | e.HMBC correlations of compound 18                              | 121 |
| 27. | NMR spectra of compound 19                                      | 122 |
|     | a. <sup>1</sup> H NMR spectrum of compound 19                   | 122 |
|     | b.APT spectrum of compound 19                                   | 122 |
|     | c.HSQC correlations of compound 19                              | 123 |
|     | d.HMBC correlations of compound 19                              | 123 |
| 28. | <sup>1</sup> H NMR spectrum of compound 20                      | 124 |
| 29. | NMR spectrum of compound 21 and 22                              | 124 |
|     | a. <sup>1</sup> H NMR spectrum of compound 21 and 22            | 124 |
|     | b. HSQC spectrum of compound 21 and 22                          | 125 |
|     | c. HMBC spectrum of compound 21 and 22                          | 125 |
|     | d. COSY spectrum of compound 21 and 22                          | 125 |
| 30. | Isolated compounds from <i>Eurotiomycetes sp.</i> strain AV-221 | 126 |
| 31. | NMR spectra of compound 29                                      | 139 |
| 51. | a. <sup>1</sup> H NMR spectrum of compound 29                   | 139 |
|     | b. APT spectrum of compound 29                                  | 139 |
|     | c. COSY correlations of compound 29                             | 140 |
|     | d. HMBC correlations of compound 29                             | 140 |
| 32. | NMR spectra of compound 23                                      | 158 |
| 32. | a. <sup>1</sup> H NMR spectrum of compound 23                   | 158 |
|     | b. H NMR spectrum of compound 23                                | 158 |
|     | c.COSY correlations of compound 23                              | 158 |
|     | d.HMBC correlations of compound 23                              | 158 |
| 33. | NMR spectra of compound 24                                      | 159 |
| 55. | a. <sup>1</sup> H NMR spectrum of compound 24                   | 159 |
|     | b.APT spectrum of compound 24                                   | 159 |
|     | c.COSY correlations of compound 24                              | 160 |
|     | d.HMBC correlations of compound 24                              | 160 |
| 34. | NMR spectra of compound 25                                      | 160 |
| 5   | a. <sup>1</sup> H NMR spectrum of compound 25                   | 160 |
|     | b.APT of compound 25                                            | 161 |
|     | c.COSY correlations of compound 25                              | 161 |
|     | d.HMBC correlations of compound 25                              | 161 |
| 35. | NMR spectra of compound 26                                      | 162 |
| 55. | a. <sup>1</sup> H NMR spectrum of compound 26                   | 162 |
|     | b.APT spectrum of compound 26                                   | 162 |
|     | c.HMBC correlations of compound 26                              | 163 |
| 36. | <sup>1</sup> H NMR spectrum of compound 27                      | 163 |
| 37. | <sup>1</sup> H NMR spectrum of compound 28                      | 163 |
| 38. | NMR spectrum of compound 20                                     | 164 |
| 50. | a. H NMR spectrum of compound 30                                | 164 |
|     | b.APT spectrum of compound 30                                   | 164 |
|     | 5.7 if appearant of compound 50                                 | 107 |

|            | c.COSY correlations of compound 30                                                                                                            | 164        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            | d.HMBC correlations of compound 30                                                                                                            | 165        |
| 39.        | NMR spectra of compound 31                                                                                                                    | 165        |
|            | a. <sup>1</sup> H NMR spectrum of compound 31                                                                                                 | 165        |
|            | b.APT spectrum of compound 31                                                                                                                 | 165        |
|            | c.COSY correlations of compound 31                                                                                                            | 166        |
|            | d.HMBC correlations of compound 31                                                                                                            | 166        |
| 40.        | NMR spectra of compound 32                                                                                                                    | 166        |
|            | a. <sup>1</sup> H NMR spectrum of compound 32                                                                                                 | 166        |
|            | b.APT spectrum of compound 32                                                                                                                 | 167        |
|            | c.COSY correlations of compound 32                                                                                                            | 167        |
|            | d.HMBC correlations of compound 32                                                                                                            | 167        |
| 41.        | <sup>1</sup> H NMR spectrum of compound 33                                                                                                    | 168        |
| 42.        | NMR spectra of compound 34                                                                                                                    | 168        |
|            | a. H NMR spectrum of compound 34                                                                                                              | 168        |
|            | b.APT NMR spectrum of compound 34                                                                                                             | 168        |
|            | c.COSY correlations of compound 34                                                                                                            | 169        |
|            | d.HMBC correlations of compound 34                                                                                                            | 169        |
| 43.        | NMR spectra of compound 35                                                                                                                    | 169        |
|            | a. H NMR spectrum of compound 35                                                                                                              | 169        |
|            | b.APT NMR spectrum of compound 35                                                                                                             | 170        |
|            | c.COSY correlations of compound 35                                                                                                            | 170        |
|            | d.HMBC correlations of compound 35                                                                                                            | 170        |
| 44.        | <sup>1</sup> H NMR spectrum of compound 36                                                                                                    | 171        |
| 45.        | NMR spectra of compound 37                                                                                                                    | 171        |
|            | a. H NMR spectrum of compound 37                                                                                                              | 171        |
|            | b.APT spectrum of compound 37                                                                                                                 | 171        |
| 46.        | NMR spectra of compound 38                                                                                                                    | 172        |
|            | a. <sup>1</sup> H NMR spectrum of compound 38                                                                                                 | 172        |
| 47         | b.APT spectrum of compound 38                                                                                                                 | 172        |
| 47.        | Cytotoxic evaluation of compound 1 against Caco2-cell lines                                                                                   | 177        |
| 48.        | Cytotoxic evaluation of compound 2 against Caco2-cell lines                                                                                   | 177        |
| 49.        | Cytotoxic evaluation of compound 4 against Caco2-cell lines                                                                                   | 177        |
| 50.        | Cytotoxic evaluation of compound 6 against Caco2-cell lines                                                                                   | 177        |
| 51.        | Cytotoxic evaluation of compound 7 against Caco2-cell lines                                                                                   | 178        |
| 52.        | Cytotoxic evaluation of compound 8 against Caco2-cell lines                                                                                   | 178        |
| 53.<br>54. | Cytotoxic evaluation of compound 9 against Caco2-cell lines                                                                                   | 178        |
| 54.<br>55  | Cytotoxic evaluation of compound 13 against Caco2-cell lines                                                                                  | 178        |
| 56.        | Comparative cytotoxic activity of compounds isolated from <i>Arthrinium sp</i> . Cytotoxic evaluation of compound 23 against Caco2-cell lines | 179<br>181 |
| 50.<br>57. | Cytotoxic evaluation of compound 29 against Caco2-cell lines                                                                                  | 181        |
| 57.<br>58. | Cytotoxic evaluation of compound 29 against Caco2-cell lines                                                                                  | 181        |
| 59.        | Cytotoxic evaluation of compound 30 against Caco2-cell lines                                                                                  | 181        |
| 60.        | Cytotoxic evaluation of compound 32 against Caco2-cell lines                                                                                  | 182        |
| 61.        | Cytotoxic evaluation of compound 32 against Caco2-cell lines                                                                                  | 182        |
| 62.        | Cytotoxic evaluation of compound 34 against Caco2-cell lines                                                                                  | 182        |
| 63.        | Cytotoxic evaluation of compound 34 against Caco2-cell lines                                                                                  | 182        |
| 64.        | Comparative cytotoxic activity of compounds isolated from <i>Eurotiomycetes sp.</i>                                                           | 183        |
| 65.        | a. Analytical HPLC/PDA run of fraction AV-6 rich in Griseofulvin                                                                              | 184        |
| 05.        | b.Library comparison of peak 6 in the fraction showing hit for Griseofulvin                                                                   | 184        |
|            | c.Chromatogram of LC/MS run for fraction AV-6 in different ionization modes                                                                   | 185        |
|            | d.MS spectra of the selected peaks assumed to be Griseofulvin                                                                                 | 185        |
| 66.        | Proposed biosynthetic pathway of Virabilin                                                                                                    | 186        |
| 67         | Proposed biosynthetic pathway of 2'cinnamovl mussaenoside                                                                                     | 187        |

| 68.<br>69. | Proposed biosynthetic pathway of spiroarthrinols A and B Biosynthetic pathway of echinulin | 188<br>189 |
|------------|--------------------------------------------------------------------------------------------|------------|
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |
|            |                                                                                            |            |

#### List of Tables

#### List of Tables

| No. | Table                                                                               | Page      |
|-----|-------------------------------------------------------------------------------------|-----------|
| 1.  | Examples of marine derived molecules in the market or in clinical trials.           | 4         |
| 2.  | Terpenoids isolated from <i>Arthrinium sp.</i>                                      | 10        |
| 3.  | Alkaloids isolated from <i>Arthrinium sp</i> .                                      | 13        |
| 4.  | peptides, polyketides and fatty acids isolated from Arthrinium sp.                  | <b>17</b> |
| 5.  | Sesterterpens isolated from <i>Sarcotragus sp.</i>                                  | 20        |
| 6.  | C-21 furanoterpenes isolated from <i>Sarcotragus sp.</i>                            | 22        |
| 7.  | Sesterterpene lactams isolated from Sarcotragus sp.                                 | 23        |
| 8.  | diterpenes, triterpenes, macrolides and alkaloids isolated from Sacrotragus sp.     | 24        |
| 9.  | Cyclitols and glycerolipids isolated from Sacrotragus sp                            | 25        |
| 10. | Chromens and hydroquinones isolated from Sarcotragus sp.                            | 26        |
| 11. | Iridoid glycosides isolated from Avicennia sp.                                      | 28        |
| 12. | Naphthalene derivatives isolated from <i>Avicennia sp</i> .                         | 31        |
| 13. | Diterpenoids derivatives isolated from Avicennia sp.                                | 33        |
| 14. | Phenylpropanoids isolated from Avicennia sp.                                        | 35        |
| 15. | VLC report of <i>Arthrinium sp</i> .                                                | 49        |
| 16. | VLC report of Eurotiomycetes sp. AV-221.                                            | 53        |
| 17. | <sup>1</sup> H and APT data for spiroarthrinol A (1) and B (2)                      | 60        |
| 18. | <sup>1</sup> H and <sup>13</sup> C data for spiroarthrinol C (3)                    | 69        |
| 19. | NMR data comparison between compounds 4 and 5.                                      | 74        |
| 20. | <sup>1</sup> H and APT data for compound 6                                          | 77        |
| 21. | <sup>1</sup> H and HSQC NMR data comparison between compounds 7 and emodin          | <b>78</b> |
| 22. | <sup>1</sup> H and HSQC NMR data comparison between compounds 8 and chrysophanol    | 81        |
| 23. | <sup>1</sup> H NMR data comparison between compounds 9 and endocrocin               | <b>82</b> |
| 24. | <sup>1</sup> H NMR data comparison between compounds 10 and 11 and norlichexanthone | 84        |
| 25. | <sup>1</sup> H and APT data for compound 12                                         | 88        |
| 26. | <sup>1</sup> H and APT data for compound 13                                         | 90        |
| 27. | <sup>1</sup> H and APT data for compound 14                                         | 92        |
| 28. | <sup>1</sup> H NMR data comparison between compounds 15 and 3-NPA                   | 93        |
| 29. | <sup>1</sup> H NMR data comparison between compounds 16 and veratric acid           | 95        |
| 30. | <sup>1</sup> H and HSQC NMR data of compound 17                                     | 98        |
| 31. | <sup>1</sup> H NMR and APT data of compound 18                                      | 100       |
| 32. | H NMR and APT data comparison between compounds 19 and dankasterone A               | 103       |
| 33. | H NMR data for compound 20                                                          | 105       |
| 34. | <sup>1</sup> H NMR data for compound 21 and 22                                      | 106       |
| 35. | NMR data of compound 23                                                             | 129       |
| 36. | NMR data of compound 24                                                             | 131       |
| 37. | NMR of compounds 25, 26 and 27.                                                     | 135       |
| 38. | NMR data of compound 28.                                                            | 136       |
| 39. | NMR data of compounds 29 and 30.                                                    | 142       |
| 40. | NMR data of compounds 31 and 32.                                                    | 146       |
|     | •                                                                                   |           |
| 41. | NMR data of compounds 33 and 34.                                                    | 149       |
| 42. | NMR data of compounds 35 and 36.                                                    | 153       |
| 43. | NMR data of compounds 37 and 38                                                     | 156       |
| 44. | Examples of cytotoxic compounds isolated from marine habitats                       | 174       |
| 45. | IC <sub>50</sub> values (μg/ml) of isolated compounds                               | 175       |

#### List of Tables

| 46. | . Cytotoxic activity of the isolated compounds from <i>Arthrinium sp</i> .  | 176 |
|-----|-----------------------------------------------------------------------------|-----|
| 47. | Cytotoxic activity of the isolated compounds from Eurotiomycetes sp. strain | 180 |
|     | AV-221                                                                      |     |

#### **List of Abbreviations**

**APT** Attached proton test

**br** broad signal

**Conc.** concentration

CC Column Chromatography

CDCl<sub>3</sub> deuterated chloroform

CD<sub>3</sub>OD deuterated methanol

CHCl<sub>3</sub> chloroform

CH<sub>2</sub>Cl<sub>2</sub> dichloromethane

**COSY** Correlation Spectroscopy

**d** doublet

**DCM** dichloromethane

**dd** doublet of doublet

**DMSO** dimethyl sulfoxide

**DNA** deoxyribonucleic acid

**eq.** equatorial

**ESI** Electro-Spray Ionization

et al. et altera (and others)

**EtOAc** ethyl acetate

**eV** electronvolt

**g** gram

**HMBC** Heteronuclear Multiple Bond Connectivity

**HPLC** High Pressure Liquid Chromatography

**hr** hour

HRESIMS High Resolution Electrospray Ionization Mass Spectrometry

**HR-MS** High Resolution Mass Spectrometry

**HSQC** Heteronuclear Single Quantum Coherence

**Hz** herz

#### List of Abbreviations

IC<sub>50</sub> half maximal inhibitory concentration

ITS Internal Transcriber Spacers

L liter

LC Liquid Chromatography

LC-MS Liquid Chromatography-Mass Spectrometry

**m** multiplet

M molar

MeOH methanol

**mg** milligram

MHz mega Herz

**min** minute

mL milliliter

**mm** millimeter

MS Mass Spectrometry

MTT Dimethylthaizolyl-diphenyl tetrazolium bromide assay,

Microculture Tetrazolium assay

*m/z* mass per charge

μ**g** microgram

μL microliter

μM micromolar

*n*- normal-

**nm** nanometer

NMR Nuclear Magnetic Resonance

NOESY Nuclear Overhauser and Exchange Spectroscopy

PCR Polymerase Chain Reaction

**ppm** parts per million

**q** quartet

**R** rectus (right)

**RP-18** reversed phase C 18

**ROESY** Rotating frame Overhauser Enhancement Spectroscopy