Effect of electromagnetic field exposure on some hepatic, hematological and metabolic parameters in rats

Thesis
Submitted in partial Fulfillment of M.D. Degree in Physiology

By

Doaa Mohamed Abd el-Wahed

Assistant lecturer, Physiology Department Faculty of medicine, Ain Shams University

Supervised by

Prof. Dr. Fatma Ahmed Mohamed

Professor of Physiology Faculty of Medicine, Ain Shams University

Prof. Dr. Ebtessam Ahmed Abu-Shady

Professor of Physiology Faculty of Medicine, Ain Shams University

Dr. Sahar Sobhy Thabet

Assistant Professor of Physiology Faculty of Medicine, Ain Shams University

Dr. Sahar Mohamed Tawfik El-Agaty

Assistant Professor of Physiology Faculty of Medicine, Ain Shams University

Physiology Department
Faculty of Medicine - Ain Shams University
2011

بسم الله الرحمن الرحيم

(يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ)

صدق الله العظيم

{سورة المجادلة آية ١١}

Acknowledgement

First of all, I thank **God** for blessing this work as a part of his generous help throughout my life.

I would like to express my sincere gratitude and deepest thanks to **Prof. Dr. Fatma Ahmed Mohamed**, Professor of Physiology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, scientific support and judicious guidance throughout this work.

I am profoundly grateful to **Prof. Dr. Ebtessam**Ahmed Abu-Shady, Professor of Physiology, Faculty of
Medicine, Ain Shams University, for her wise council,
expert guidance, and keen supervision.

I am greatly thankful to **Dr. Sahar Sobhy Thabet**, Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, for her limitless help, kind encouragement and generous assistance throughout the whole work. I wish to express my gratitude to **Dr. Sahar Mohamed Tawfik El-Agaty**, Assistant Professor of Physiology,

Faculty of Medicine, Ain Shams University, for her continuous supervision and faithful advice.

I would like to acknowledge my appreciation to **Prof. Dr. Faten Mahmoud Aly Diab**, Head of Physiology

Department, Faculty of Medicine, Ain Shams University, for her continuous encouragement and support.

I would also like to display my deepest thanks to **Prof. Dr. Salwa Saad Lashin,** Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her generous assistance and valuable comments in the histological studies included in the present work.

Last but not least, I would like to thank all members of the Physiology Department for their cooperation and support.

To My Family

Contents

	Page
•Introduction	1
•Aim of the work	3
•Review of Literature:	4
Electromagnetic fields as an oxidative stress	8
Biological effects of exposure to electromagnetic fields	13
Effects of exposure to electromagnetic fields on hepatic tissue	e20
Haematological effects of exposure to electromagnetic fields	:
-Effects of exposure to EMF on blood cells	25
-Effects of exposure to EMF on blood cells	27
Effects of exposure to electromagnetic fields on metabolism.	31
•Materials and Methods	33
•Results	70
•Discussion	123
•Recommendations	140
•Summary and Conclusion	141
•References	146
• A robic Summory	

List of Tables

Table no.	Title	Page
1	Plasma alanine aminotransferase enzyme level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	83
2	Plasma aspartate aminotransferase enzyme level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	84
3	Prothrombin time in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	85
4	Activated partial thromboplastin time in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	86
5	Blood glucose level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	87
6	Plasma triglycerides level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	88
7	Plasma total cholesterol level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	89
8	Plasma high density lipoproteins-cholesterol level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	90
9	Plasma low density lipoproteins-cholesterol level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	91
10	Atherogenic index in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	92
11	Plasma malondialdehyde level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	93
12	Liver malondialdehyde level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	94
13	Plasma nitric oxide level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	95

14	Liver nitric oxide level in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	96
15	Cumulative table showing plasma alanine aminotransferase and aspartate aminotransferase levels in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	97
16	Cumulative table showing prothrombin time and activated partial thromboplastine time in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	98
17	Cumulative table showing blood glucose level in control rats and rats exposed for cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks	99
18	Cumulative table showing plasma triglycerides and total cholesterol levels in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	100
19	Cumulative table showing plasma high density lipoproteins-cholesterol and low density lipoproteins-cholesterol levels in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	101
20	Cumulative table showing atherogenic index in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	102
21	Cumulative table showing plasma malondialdehyde and liver malondialdehyde levels in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	103
22	Cumulative table showing plasma nitric oxide and liver nitric oxide levels in control rats and rats exposed to cellular phones electromagnetic fields for 1, 2 or 3 hours/day for 4 weeks and for 1, 2 or 3 hours/day for 8 weeks.	104

List of Figures

Figure no.	Title	Page
1	ALT standard curve.	40
2	AST standard curve.	43
3	Plasma alanine aminotransferase enzyme levels in the different 4 weeks and 8 weeks exposure groups.	105
4	Plasma aspartate aminotransferase enzyme levels in the different 4 weeks and 8 weeks exposure groups.	105
5	Prothrombin time in the different 4 weeks and 8 weeks exposure groups.	106
6	Activated partial thromboplastine time in the different 4 weeks and 8 weeks exposure groups.	106
7	Plasma triglyceride level in the different 4 weeks and 8 weeks exposure groups.	107
8	Plasma total cholesterol level in the different 4 weeks and 8 weeks exposure groups.	107
9	Plasma high density lipoproteins-cholesterol level in the different 4 weeks and 8 weeks exposure groups.	108
10	Plasma low density lipoproteins-cholesterol level in the different 4 weeks and 8 weeks exposure groups.	108
11	Atherogenic index in the different 4 weeks and 8 weeks exposure groups.	109
12	Plasma malondialdehyde level in the different 4 weeks and 8 weeks exposure groups.	110
13	Liver malondialdehyde level in the different 4 weeks and 8 weeks exposure groups.	110
14	Plasma nitric oxide level in the different 4 weeks and 8 weeks exposure groups.	111
15	Liver nitric oxide level in the different 4 weeks and 8 weeks exposure groups.	111
16	Photomicrographs of liver tissue from control rat, showing hepatic lobules with normal appearance of hepatocytes, hepatic sinusoids, central vein and the portal tract containing hepatic artery, hepatic vein and bile duct.	112
17	Photomicrographs of liver tissue from 4 weeks-1 hour/day exposure group, showing hepatocytic vacuolizations, enlargement of sinusoids and collapsed sinusoids.	113
18	Photomicrographs of liver tissue from the 4 weeks-2 hours/day exposure group, showing enlargement of sinusoids and hepatocytic vacuolizations and collapsed sinusoids.	114

19	Photomicrographs of liver tissue from the 4 weeks-3 hours/day exposure group, showing inflammatory cellular infiltrations and enlargement of sinusoids and hepatocytic vacuolizations.	115
20	Photomicrographs of liver tissue from the 8 weeks-1 hour/day exposure group, showing hepatocytic vacuolizations, congestion in central vein and sinusoids and portal tract.	116
21	Photomicrographs of liver tissue from the 8 weeks-2 hours/day exposure group, showing congestion in portal tract and central vein.	117
22	Photomicrographs of liver tissue from the 8 weeks-3 hours/day exposure group, showing hepatocytic vacuolizations and collapsed sinusoids and congestion in portal tract.	118
23	Photomicrographs of liver tissue from control rat, showing glycogen rosettes distributed all over the lobule inside the hepatocytes.	119
24	Photomicrograph of liver tissue from the 4 weeks-1 hour/day exposure group, showing decrease in hepatic glycogen.	120
25	Photomicrograph of liver tissue from the 4 weeks-2 hours/day exposure group, showing decrease in hepatic glycogen.	120
26	Photomicrograph of liver tissue from the 4 weeks-3 hours/day exposure group, showing decrease in hepatic glycogen.	121
27	Photomicrograph of liver tissue from the 8 weeks-1 hour/day exposure group, showing decrease in hepatic glycogen.	121
28	Photomicrograph of liver tissue from the 8 weeks-2 hours/day exposure group, showing decrease in hepatic glycogen.	122
29	Photomicrograph of liver tissue from the 8 weeks-3 hours/day exposure group, showing decrease in hepatic glycogen.	122

List of Abbreviations

ADA : Adenosine deaminase.

ALT : Alanine aminotransferase.

ALP : Alkaline phosphatase.

AST : Aspartate aminotransferase.

AI : Atherogenic Index.

APTT : Activated partial thromboplastin time.

ATP : Adenosine triphosphate.

CAT : Catalase.

ELF : Extremely low frequency.

EMF : Electromagnetic field.

EMR : Electromagnetic radiation.

FAD : Flavin adenine dinucleotide.

FSH : Follicle stimulating hormone.

γ-GT : Gamma glutamyl transferase.

GHz : Gega Hertz.

GSH : Glutathione.

GSH-Px : Glutathione peroxidise.

HDL-C : High density lipoprotein-cholesterol.

Hx & E : Haematoxylin and Eosin.

Hz : Hertz.

IR : Infrared.

KHz : Kilo Hertz.

LDH : Lactate dehydrogenase.

LDL-C : Low density lipoprotein-cholesterol.

LH : Leutinizing hormone.

MDA : Malondialdehyde.

MHz : MegaHertz.

MPO : Myeloperoxidase.

NADPH : Nicotinamide adenine dinucleotide phosphate.

NO : Nitric oxide.

NOS : Nitric oxide synthase.

PAI : Plasminogen activator inhibitor.

PAS : Periodic Acid Schiff's reaction.

PT : Prothrombin time.

RF : Radiofrequency.

ROS : Reactive oxygen species.

SOD : Superoxide dismutase.

T₃ : Triiodothronine.

 T_4 : Thyroxin.

TBA : Thiobarbituric acid.

TC : Total cholesterol.

TCAA : Trichloroacetic acid.

TG: Triglycerides.

TNF- α : Tumor necrosis factor-alpha.

TSH : Thyroid stimulating hormone.

XO : Xanthine oxidase.

UV : Ultraviolet.

Introduction

Almost all populations are exposed in the present time to Electromagnetic fields (EMFs), a documented form of stress (*Salem et al.*, 2005), as a result of the vast distribution of power lines, wiring, cellular phones and home appliances, which generate electromagnetic fields. These EMFs were accused of posing health risks (*Bediz et al.*, 2006).

Further, the widespread use of wireless telecommunication devices, particularly cellular phones, resulting in increased human exposure to radiofrequency (RF) fields, raised concerns still exist about the potential for adverse health outcomes to occur in relation to RF field exposure despite the establishment of safety guidelines by national and international agencies (*Krewski et al.*, 2007).

In fact, the use of mobile phones has increased significantly over the past decade. This widespread use of mobile phones in recent years has raised the research activities in many countries to determine the consequences of exposure to the electromagnetic radiation (EMR) of

mobile phones (*Ilhan et al. 2004*), and to highlight the negative effects of exposure to cell phone-EMF on human health (*Makker et al., 2009*).

Bediz et al. (2006) reported that exposure to EMF could cause cell damage in various tissues and **Torres- Duran et al.** (2007) stated that among the most susceptible tissues to EMF exposure is the liver. The impact of exposure to cell phone-EMF on liver integrity, hemostatic function and metabolic activities was, therefore, intriguing.