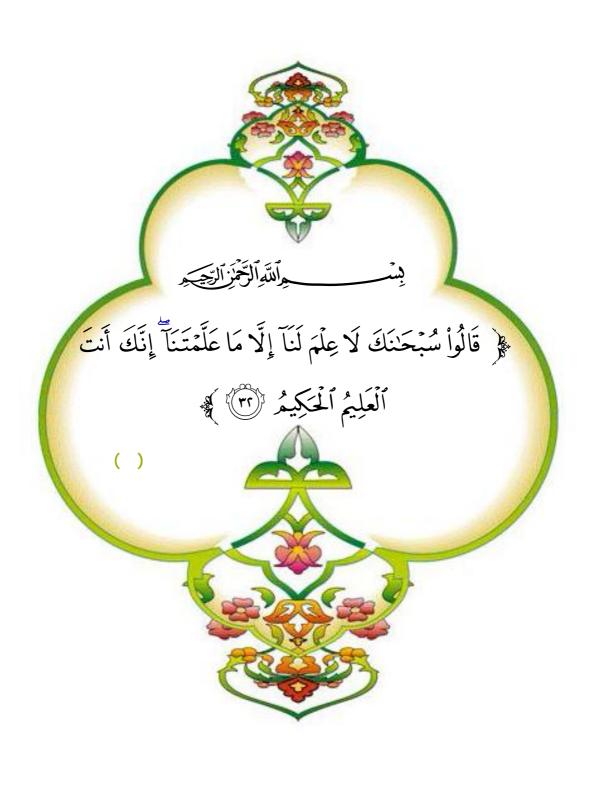
Urinary Concentrations of Eosinophil-Derived Neurotoxin in Children with Atopic Dermatitis

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Presented By

Amal EL-Awady Ibrahim EL-Deep


M.B, B.CH (2004), Mansoura University

Supervised By

Professor Gehan Ahmed Mostafa
Professor of Pediatrics
Faculty of Medicine, Ain-Shams University

Professor Samar Abd Allah Salem
Professor of Dermatology, Venerology and Andrology
Faculty of Medicine, Ain-Shams University

Faculty of Medicine
Ain-Shams University
2011

Acknowledgment

At first and foremost thanks to "ALLAH" who granted me the power to finish this work.

I would like to express my deepest gratitude and profound respect to my professor, **Dr. Gehan Ahmed Mostafa**, professor of Pediatrics, Ain Shams University, for her continuous support, enriching observations and sincere advice throughout this work.

My heartful thanks and appreciation are due to **Dr. Hoda Yahya Tomoum**, professor of pediatrics, Ain Shams University, who offered me a lot of guidance and encouragement while supervising every step of this work.

Special appreciation goes to **Dr. Samar Abd Allah Mohamed Salem**, professor of Dermatology, Venereology and Andrology, Ain Shams University, for her great support, fruitful comments, valuable encouragement and guidance.

I would also like to thank **Dr. Manal Mohamed Abd El Aziz**, professor of Clinical Pathology, for her kind and active participation in the laboratory part of this work

To my colleagues, my patients and to everyone who participated one way or another in this work, I owe my thanks and appreciation.

Amal EL Awady EL Deep

DEDICATION

To

My Mother

My Father

and my Sister

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	V
List of Figures	vii
Introduction and Aim of the work	1
Review of Literature	5
Atopic dermatitis	5
• Eosinophils	36
• Eosinophil derived neurotoxin (EDN)	57
Subjects and methods	62
Results	70
Appendix	85
Discussion	89
Recommendations	96
Summary	97
References	100
Arabic summary	_

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Classification of Atopic Eczema Dermatitis	
	Syndrom (AEDS)	6
Fig. (2):	Interaction of events in AD	21
Fig. (3):	Cardinal structures of a human eosinophil	37
Fig. (4):	Eosinophilopoiesis	44
Fig. (5):	Model of constutive and regulated exocytosis	47
Fig. (6):	Cytolysis of human eosinophil within airway mucosa	48
Fig. (7):	ROC curve for differentiation between patients and controls	68
Fig. (8):	ROC curve for differentiation between mild and moderate AD	78
Fig. (9):	ROC curve for differentiation between moderate and severe AD	79
Fig.(10):	Variation of urinary EDN levels according to the severity of AD according to obj SCORAD	81
Fig.(11):	Correlation between EDN and obj SCORAD	82
Fig.(12):	Correlation between urinary EDN and duration of illness	84

List of Tables

Tab. No.	Title	Page No.
Table (1):	Spectrum of triggers of itch in AD	9
Table (2):	Diagnostic features of AD	23
Table (3):	Modified criteria for diagnosis of AD in infants	24
Table (4):	Eosinophilic granular proteins and cytokines	38
Table (5):	Eosinophil surface markers	43
Table (6):	Basic clinical and laboratory data of patients with AD	71
Table (7):	Comparison of urinary EDN, blood eosinophil counts between patients with AD and controls	72
Table (8):	Comparison of urinary EDN levels between patients with AD of varying severities according to Obj. SCORAD and controls	73
Table (9):	Comparison of blood eosinophil counts between patients of AD of varying severities and healthy children	74
Table (10):	urinary EDN levels in relation to sex and family history of atopy	75
Table (11):	urinary EDN levels in relation to sex of controls	75
Table (12):	Comparison between clinical data of patients with AD of varying severities	76
Table (13):	Sensitivity and specificity of urinary EDN in differentiation of different severities of atopic dermatitis at its calculated best	
	cut-off Value using ROC curve	77

List of Tables (Cont...)

Tab. No.	Title	Page No.
Table (14):	Comparison of urinary EDN, blood eosinophil counts between patients of AD of varying severities	80
Table (15):	Correlation between urinary EDN and the other studied clinical, laboratory data of patients with AD	83
Table (16):	Correlation between urinary EDN and the other studied clinical data of controls	84

List of Abbreviations

AAEDS Allergic IgE associated atopic dermatitis/eczema

syndrome

ACD Allergic contact dermatitis

AD Atopic dermatitis

AEC Absolute eosinophilic count

AEDS Atopic eczema/dermatitis syndrome

APC Antigen presenting cell

BLN Bi lobed nuclus

CBC Complete blood count

CCR Chemokine receptor

CD Cluster of differentiation

CML Chronic myeloid leukamia

COX Cyclo oxygenase

CRTH2 Chemoattractant receptor homologous molecule

expressed on Th2 cells

DC Dentritic cell

DNA Deoxy ribonucleic acid

ECP Eosinophil cationic protein

EDN Eosinophil derived neurotoxin

EPO Eosinophil peroxidase

EPX Eosinophil protein X

FPR Formyl peptide receptor

GM-CSF Granulocyte macrophage colony stimulating factor

HIV Human immunodeficiency virus

HLA Human leucocytic antigen

ICAM Intercellular adhesion molecule

IDEC Inflammatory dendritic epidermal cell

IFN-γ Interferon gamma

IgAImmunoglobulin AIgEImmunoglobulin E

IgG Immunoglobulin G

IL Interlukin

ILTs Ig like transcripts

IQR Interquartile range

ITIM Immunoreceptor tyrosine –based inhibitory motif

LB Lipid bodies

LC Langerhans cells

LFA Leucocyte function-associated antigen

LO Lipo oxygenase

LPL Lysophospholipase

LTR Leukotriene receptor

MBP Major basic protein

MIP Macrophage inflammation protein

MPDs Myeloproliferative disorders

mRNA Messenger ribonucleic acid

NAAEDS Non allergic IgE associated atopic dermatitis/eczema

syndrome

Obj Objective

PAF Platelet-activating factor

PGE2 Prostaglandin E2

PMD Piecemeal degranulation

P. ovale Pityrasis ovale

RANTES Regulated upon activation normal T-cell expressed

and secreted

RSV Respiratory synctial virus

SCORAD Scoring atopic dermatitis index

SD Standard deviation

SG Small granules

SIT Specific immunotherapy

SNAP Soluble N-ethylmaleimide –sensitive factor

attachment protein

SNARE SNAP receptor

TGF-\beta Transforming growth factor- β

Th cells T helper cells

TNF Tumor necrosis factor

TNF-NGF Tumour necrosis factor-nerve growth factor

T Regs T regulatory cells

TSLP Thymic stromal lymphopoietin

VCAM-1 Vascular cell adhesion molecular-1

INTRODUCTION AND AIM OF THE WORK

Introduction

Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease that is characterized by cutaneous hyperactivity to environmental triggers that are innocuous to non-atopic individuals (Leung et al., 2004). AD is often the first step in the atopic march resulting in asthma and allergic rhinitis (Leung and Bieber, 2003). There are at least 13 scoring systems and indices for assessment of disease severity in children with AD (Chairman and Williams, 2000). Problems with inter and intrapersonal variability become an unavoidable issue when using subjective clinical indices to assess the severity of AD. Thus, it would be useful for clinicians to have objective laboratory markers that correlate with clinical aspects of AD to assess the disease severity to manage it properly (Leung et al., 2004).

Eosinophils have a unique contribution in initiating inflammatory and adaptive responses, due to their bidirectional interactions with dendritic cells and T cells, as well as their large panel of secreted cytokines and soluble mediators (*Blanchard and Rothenberg*, 2009). Eosinophils play an effector role in AD because they migrate from blood into lesional skin of AD and release cytotoxic mediators such as cytotoxic proteins (eosinophil cationic protein and eosinophil

protein X) (*Nassenstein et al.*, 2003), lipid mediators, oxygen metabolites and cytokines (*Barouch et al.*, 2000).

Understanding the complex pathophysiology of allergic diseases has been a main challenge of clinical and experimental research for many years. During allergic inflammation, a bidirectional regulation of neuronal stimulation and allergic prospected. inflammation has **Neuromediators** been (neurotrophins and neuropeptides) represent the key factor of this process, working on either immune or structural cells and exerting neuroimmunomodulatory functions (Nockher and **Renz.** 2006). Eosinophils are potentially able to express cell surface receptors for all neurotrophins (Nassenstein et al., 2003). When eosinophils were cultured in the presence of neurotrophins, an antiapoptotic effect of neurotrophins was observed (Braun et al., 1999).

The eosinophil-derived neurotoxin (EDN, also known as eosinophil protein-X) is best-known as one of the four major proteins found in the large specific granules of human eosinophilic leukocytes. Although it was named for its discovery and initial characterization as a neurotoxin, it is also expressed constitutively in human liver tissue and its expression can be induced in macrophages by proinflammatory stimuli. EDN and its divergent orthologs in rodents have ribonuclease and are members of the extensive RNase A activity, superfamily, relationship although the the between

characterized physiologic functions and enzymatic activity remains poorly understood. Recent explorations into potential physiologic functions for EDN have provided us with some insights into its role in antiviral host defense, as a chemoattractant for human dendritic cells, and most recently, as an endogenous ligand for toll-like receptor (*Rosenberg*, 2008).