

Ain Shams University
Faculty of Engineering
Computer and Systems Engineering Department

Enhanced Secure Algorithm for Fingerprint Recognition

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Philosophy of Doctoral in Electrical Engineering (Computer and Systems)

Submitted by **Eng. Amira Mohammad Abdel-Mawgoud Saleh**

B.Sc., Electrical Engineering
(Computer and Systems Engineering Department)
Ain Shams University, 2000
M.Sc., Electrical Engineering
(Computer and Systems Engineering Department)
Ain Shams University, 2004

Supervised by
Prof. Dr. Abdel-Moneim A. Wahdan
Prof. Dr. Ayman M. Wahba
Dr. Ayman Mohammad Bahaa Eldeen Sadeq
Computer and Systems Engineering Department
Cairo. 2011

Faculty of Engineering Computer and Systems Engineering Department

Examiners Committee

Name: Amira Mohammad Abdel-Mawgoud Saleh

Thesis: Enhanced Secure Algorithm for Fingerprint Recognition

Degree: Doctor of Philosophy in Electrical Engineering

Name, Title, and Affiliation	Signature
1. Prof. Dr. Ali Farag	
Professor of Electrical and Computer Engineering	
Director, Computer Vision and Image Processing	
Laboratory	
Unioversity of Louisville, Kentucky, USA 40292	
2. Prof. Dr. Hani. M. Kamal Mahdi	
Computer and Systems Engineering Department	
Faculty of Engineering,	
Ain Shams University, Cairo, Egypt	
3. Prof. Dr. Abdel-Moneim A. Wahdan (Supervisor)	
Computer and Systems Engineering Department	
Faculty of Engineering,	
Ain Shams University, Cairo, Egypt	
4. Dr. Ayman M. Bahaa El-Din (Supervisor)	
Computer and Systems Engineering Department	
Faculty of Engineering,	
Ain Shams University, Cairo, Egypt	
2	

Date: 12 / 9 / 2011

كلية الهندسة قسم هندسة الحاسبات والنظم

خوارزم آمن ومحسن للتعرف على بصمة الإصبع

رسالة مقدمة للحصول على درجة الدكتوراة في الهندسة الكهربية (هندسة الحاسبات والنظم)

مقدمة من

المهندسة / أميرة محمد عبد الموجود محمد صالح بكالوريوس الهندسة الكهربية (هندسة الحاسبات والنظم) كلية الهندسة جامعة عين شمس ٢٠٠٠ ماجستير في الهندسة الكهربية (هندسة الحاسبات والنظم) كلية الهندسة جامعة عين شمس ٢٠٠٤

تحت إشراف الدكتور/ عبد المنعم عبد الظاهر و هدان الأستاذ الدكتور/ أيمن محمد و هبة الدكتور/ أيمن محمد و هبة الدكتور/ أيمن محمد بهاء الدين صادق قسم هندسة الحاسبات والنظم القاهرة - ٢٠١١

Abstract

Amira Mohammad Abdel-Mawgoud Saleh

Enhanced Secure Algorithm for Fingerprint Recognition

Philosophy of Doctoral Dissertation
(Ain Shams University - Faculty of Engineering - 2011)

Recognition of persons by means of biometric characteristics is an emerging phenomenon in our society. It has received more and more attention during the last years due to the need for security in a large range of applications. Among the many biometric features, the fingerprint is considered one of the most practical ones. Fingerprint recognition requires a minimal effort from the user, does not capture other information than strictly necessary for the recognition process, and provides relatively good performance. Another reason for the popularity of fingerprints is the relatively low price of fingerprint sensors, which enables easy integration into PC keyboards, smart cards and wireless hardware.

A critical step in fingerprint identification system is thinning of the input fingerprint image. The performance of a minutiae extraction algorithm relies heavily on the quality of the thinning algorithm. So, a fast fingerprint *thinning* algorithm is proposed. The algorithm works directly on the gray-scale image not the binarized one as binarization of fingerprint causes many spurious minutiae and also removes many important features. The performance of the thinning algorithm is evaluated and experimental results show that the proposed thinning algorithm is both fast and accurate.

The next step after thinning of the fingerprint image is minutiae extraction. These minutiae together with the template obtained from the database are used in fingerprint matching. In this study, a new minutiae-based fingerprint *matching* technique is proposed. The main idea is that each fingerprint is represented by a minutiae table of just two columns in the database. The number of different minutiae types (terminations and bifurcations) found in each track of a certain width around the core point

of the fingerprint is recorded in this table. Each row in the table represents a certain track, in the first column, the number of terminations in each track is recorded, in the second column, the number of bifurcations in each track is recorded. Since neither minutiae *position* nor *orientation* is considered in tables representing the fingerprints in database, the algorithm is rotation and translation invariant, and needs less storage size. Experimental results show that recognition accuracy is 98%, with Equal Error Rate (EER) of 2%.

Finally, the integrity of the data transmission via communication channels must be secure all the way from the scanner to the application. This is typically achieved by cryptographic methods. So, a watermarking algorithm is proposed, to hide the minutiae data (proposed minutiae table) in its corresponding fingerprint using two secret keys k_1 , and k_2 to increase security. The watermarking algorithm is blind i.e. it does not need the original fingerprint to extract the watermark. Two security watermarking applications are studied which can be used to guarantee secure transmission of acquired fingerprint images from intelligence agencies to a central image database and to eliminate several types of biometric system attacks.

Experimental results show that watermark is both invisible and robust against Gaussian noise addition, and JPEG compression with high and moderate quality factors. After watermarking and without attacks, recognition accuracy does not change and still is 98%. After applying Gaussian noise addition, and JPEG compression with high and moderate quality factors on the watermarked fingerprint images, recognition accuracy decreases slightly to reach 96%.

Keywords:

Biometrics, fingerprints, segmentation, image processing, fingerprint recognition, Gabor filter, fingerprint enhancement, binarization, thinning algorithms, skeleton, direction field analysis, feature extraction, minutiae matching, adaptive singular point detection, core point, fingerprint identification, verification, secure authentication, threat model, watermarking, information security, Data hiding.

List of publications

- 1. A. M. Saleh, A. M. Bahaa Eldin, and A.-M. A. Wahdan, "A Modified Thinning Algorithm for Fingerprint Identification Systems," in *International Conference on Computer Engineering and Systems ICCES* Cairo, Egypt, December 14-16, 2009, pp. 371-376.
- 2. Amira Saleh, Ayman Bahaa and A. Wahdan (2011). Fingerprint Recognition, Advanced Biometric Technologies, Girija Chetty and Jucheng Yang (Ed.), ISBN: 978-953-307-487-0, InTech, Available from: http://www.intechopen.com/articles/show/title/fingerprint-recognition

Acknowledgement

First, I would like to thank ALLAH for his great support to me in accomplishing this work.

I would like to express my deepest gratitude to Prof. Abdel-Moneim Wahdan for suggesting of the point of research, his valuable advices, and his great efforts revising the thesis. I can not express my thanks to him for his care and guidance that started long ago since I was an undergraduate student and during my Master of Science degree. He actually gave me the chance to express my capabilities and to put my first step in scientific research.

I would like also to thank Dr. Ayman Mohammad Bahaa Eldeen Sadeq for his great efforts along the thesis development since it was just thoughts in mind. I would like to thank him for his great support and for supplying me with all the materials and references I needed.

I would like to thank Eng. Ahmad Zaki, member of the staff of Computer and System Engineering Department, for his help, support and encouragement.

Also, I would like to thank Mrs Seham, the secretary of our department. She was always helpful, kind and answering all my questions at anytime and anywhere.

I would like also to express my deepest gratitude for my dear mother for her patience, great support and encouragement during the most critical stages of the thesis. I thank her for taking responsibility of my daughter and my son providing me with full means of comfort to concentrate well in my work. Also, I would like to thank my brothers, especially Ahmad, who supported me with useful resources, care and encouragement.

At last but not least, I would like to thank my beloved husband for his care, patience, and encouragement during the thesis development. In fact, I don't find the words that would fairly express my thankfulness and gratitude to him.

Finally, I wished my dear father, Dr. Mohammad Abdel-Mawgoud, attend this happy occasion of obtaining the doctoral degree about which he cared a lot in his last words to me. May ALLAH send his blessing upon him.

Statement

This dissertation is submitted to Ain Shams University for the degree of Philosophy of Doctoral in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at the Computer and Systems Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date:12/9/2011

Name: Amira Mohammad Saleh

Signature:

Table of contents

Abstract		<i>I</i>
List of pul	blications	.III
Acknowle	dgement	. IV
Statement	·	<i>V</i>
Table of c	ontents	. <i>VI</i>
List of Tal	bles	. XI
List of Fig	gures	XIII
List of Syr	mbols and Abbreviations2	<i>KVI</i>
Chapter 1	Introduction	1
1.1. Bion	netric Recognition	1
1.2. Hist	ory of Fingerprinting	2
1.3. Orga	anization of The Thesis	3
Chapter 2	Fingerprint Analysis and Matching	4
2.1. Feat	ture Extraction	7
2.1.1.	Local Ridge Orientation	. 10
2.1.2.	Local Ridge Frequency	. 11
2.1.3.	Segmentation	. 12
2.1.4.	Singularity and Core Detection	. 13
2.1.5.	Enhancement	. 18
2.1.6.	Binarization and Minutiae Extraction	. 22
2.1.7.	Minutiae Filtering	. 26
2.2. Fing	gerprint Verification Competition FVC	. 27
	gerprint Matching	
2.3.1.	Correlation-Based Techniques	. 30
۲,٣,٢.		

2.3.2.1. Problem formulation	32
Y, Y, Y, Y. Minutiae matching with pre-alignment	35
2.3.2.3. Avoiding alignment	
Y, Y, Y, E. Global versus Local Minutiae Matching	37
T,T,T. Ridge Feature-based Matching Techniques	37
2.3.4. Minutiae vs. pattern based fingerprint templates	39
2.3.4.1. Pattern-Based Templates	
2.3.4.2. Minutia-based Templates	40
2.3.5. Comparing the Performance of Matching Algorithm	ıs43
2.3.6. Recognition Rate	45
2.3.6.1. Terminology and Measurement	
2.3.6.2. Specifying and Evaluating Recognition Rate Stati	
2.4. Industrial Fingerprint Matching Systems	49
2.4.1. About UPEK's TouchStrip™ Fingerprint Authentic	
Solution	51
2.4.2. About EZ-USB FX2LP	51
2.4.3. About UPEK	52
2.4.4. About Cypress	52
2.5. Limitations in conventional fingerprint matching system an	d
motivation	
2.5.1. Limitations	53
2.5.2. Motivation	54
2.3.2. 171011/411011	
Chapter 3 Proposed Fingerprint Thinning Algorithm	55
3.1. The proposed thinning algorithm	
3.1.1. Algorithm steps	
3.1.1.1. Divide the fingerprint image into type1 and type2 bloads 3.1.1.2. Fingerprint Segmentation	
3.1.1.2. Fingerprint Segmentation	
3.1.1.4. Correcting errors	
3.2. Wuzhili Thinning Method	
3.3. Experimental Results	68

<i>3.4.</i>	Perfo	rmance Evaluation	68
Cha	pter 4 F	Proposed Fingerprint Matching Algorithm	. 71
<i>4.1</i> .	Form	al description of fingerprint identification system	76
		roposed matching algorithm	
		Enrollment phase	
		Verification phase	
		-	
		ntages of the proposed matching algorithm	
	_	mentation of the proposed matching algorithm	
4.		Enrollment phase	
	4.4.1.1	\mathcal{C} 1 \mathcal{C}	
		. Get core point of the enhanced fingerprint	
		. Minutiae extraction	
4		Verification phase	
4.		Capture the fingerprint to be verified	
		Construct the minutiae table of that fingerprint	
		. Get all corresponding minutiae tables from the database.	
		. Calculate the absolute differences between minutiae tabl	
	of the i	nput fingerprint and all minutiae tables of the claimed	
		orint	
	4.4.2.5	. Get the summation of each column in each difference tal	
	1126	Cot the geometric mann of the resulted symmetric for	
		Get the geometric mean of the resulted summations for type1 and type2	
4			
4.		Performance Evaluation	. 99
		on Rate (FRR)	99
	4.4.3.2		
	Rate (F	FAR)	
	4.4.3.3	1	
	4.4.3.4		
	4.4.3.5		
	4.4.3.6 4.4.3.7	ϵ	
	+.+.3./) 114

		8. Calculating average enroll time	
	4.4.3.	9. Calculating average match time	
4.	4.4.	Comparison with Whuzhili method	.118
4.	4.5.	Conclusion	.118
Cha	nter 5	Securing Fingerprint Systems	120
		oduction	
		ts of Attack	
<i>5.3.</i>	U	an Horse Attacks	
	-	ay Attacks	
	4.1.	8 m 2 mm m 8 8 L m m m m m m m m m m m m m m	
5.5.		ious work	
<i>5.6.</i>		ication of watermarking on fingerprint recognition system	
5.	6.1.	Data hiding method	.128
5.		The proposed watermarking method	.132
5.	6.3.	Implementation of the proposed watermarking algorithm	hm .
	563	Implementation of watermark embedding	
	5.6.3.	-	
5.	5.6.4. 5.6.4.	1. Application #1: Steganography based minutiae hiding	. 144 tion
5.	6.5.		
5.	6.6.	Recognition accuracy analysis	.155
Cl		Canalysians and Enture Work	150
	•	Conclusions and Future Work	
		clusions	.158 150
n /	H 11711	rv work	174

References	. 160
Appendices	. 168
Appendix A	. 168
Core point detection Matlab source code	. 168
Appendix B	. 172
Minutiae extraction and matching algorithm Matlab source codes	. 172
Appendix C	. 183
Thinning algorithm Matlab source code	. 183
Appendix D	. 189
Cryptographic methods	. 189
Appendix E	. 192
Watermark embedding and extraction algorithms Matlab source co	

List of Tables

Table 2.1. Specifications of each database [30].	28
Table 2.2. Minutiae vs. Pattern based fingerprint templates	43
Table 3.1. The gray values of a type1 block.	61
Table 3.2. The gray values of a type2 block	62
Table 3.3. The result of thinning of block of Table 3.1	64
Table 3.4. The result of thinning of block of Table 3.2	65
Table 4.1. The minutiae table of fingerprint 108_5 from DB1_B in FVC2000	87
Table 4.2. The minutiae table of fingerprint 108_7 from DB1_B in FVC2000	90
Table 4.3. Minutiae table corresponding to the fingerprint 108_1	93
Table 4.4. Minutiae table corresponding to the fingerprint 108_2	93
Table 4.5. Minutiae table corresponding to the fingerprint 108_3	94
Table 4.6. Minutiae table corresponding to the fingerprint 108_4	95
Table 4.7. Minutiae table corresponding to the fingerprint 108_6	95
Table 4.8. Minutiae table corresponding to the fingerprint 108_8	96
Table 4.9. Absolute differences between minutiae table of fingerprint 108_7	
both minutiae tables of fingerprints 108_1, 108_2	
Table 4.10. Absolute differences between minutiae table of fingerprint 108_7	
both minutiae tables of fingerprints 108_3, 108_4.	
Table 4.11. Absolute differences between minutiae table of fingerprint 108_7 both minutiae tables of fingerprints 108_5, 108_6.	
Table 4.12. Absolute differences between minutiae table of fingerprint 108_7	
minutiae table of fingerprint 108_8	
Table 4.13. The minutiae table of fingerprint 101_1 and its noisy version	103
Table 4.14. The minutiae tables of fgps 101_2 and 101_3	103
Table 4.15. Absolute differences between noisy version of minutiae table	
fingerprint 101_1 and both minutiae tables of fingerprints 101_1, and 101	
Table 4.16. Absolute difference between noisy version of minutiae table fingerprint 101_1 and minutiae table of fingerprint 101_3	
Table 4.17. The minutiae tables of fgp 103_1	
Table 4.18. The minutiae tables of fgp 103_2 and 103_3	
Table 4.19. Absolute differences between noisy minutiae table of fingerprint 10	
and minutiae table of fingerprint 103_1	
Table 4.20. Absolute differences between noisy minutiae table of fingerprint 10	
and both minutiae tables of fingerprints 103_2, 103_3	
Table 4.21. Results of EER and its corresponding thresholds after applying	the
proposed matching algorithm on FVC2000	
Table 4.22. Results of FAR and FRR and their corresponding thresholds a	
applying the proposed matching algorithm on FVC2000	
Table 4.23. Enroll timing details	
Table 4.24. Match timing details	118

Table 4.25. Comparison between proposed and whuzhili matching methods	118
Table 5.1. Minutiae table of fingerprint 101_1	138
Table 5.2. Binary representation of minutiae table of fingerprint 101_1	139
Table 5.3. The results of applying watermarking algorithm on fingerprints 101_2, 101_3, and 102_1.	_ ′
Table 5.4. Similarity values between original and extracted watermarks applying different attacks on different fingerprint images	
Table 5.5. Recognition accuracy after applying different attacks on waterm images	