وزن الجنين عند الولاده و عمره الحملي كمؤشر لنقص السكر في الدم في حالات الحمل غير السكري

رسالة توطئة للحصول على درجة الماجستير في أمراض النساء والتوليد

مقدمة من الطبيبة/ نهاد فاروق عبد الله بكالوريوس الطب والجراحة جامعة الأزهر

تحت إشراف أ.د./ أيمن عبد الرازق أبو النور أستاذ أمراض النساء والتوليد كلية الطب - جامعة عين شمس

د. / شريف فتحي المكاوى

استاذ مساعد أمراض النساء والتوليد كلية الطب - جامعة عين شمس

د. / أمل أحمد عباس مدرس الباثولوجية الإكلينيكية كلية الطب - جامعة عين شمس

کلیة الطب _ جامعة عین شمس ۱ ۱ ، ۲

FETAL BIRTH WEIGHT AND GESTATIONAL AGE AS A PREDICTOR FOR NEONATAL HYPOGLYCEMIA IN NON DIABETIC PREGNANCY

Thesis

Submitted for Partial Fulfillment of the Master Degree in Obstetrics and Gynecology

By

Nehad Farouk Abdu-Allah M.B.B.;Ch. AlAzhar University

Supervised By

Prof. Dr. Ayman Abdel-Razek Abou Alnour

Professor of Obstetrics and Gynecology Faculty of Medicine -Ain Shams University

Dr. Sherif Fathi El-Makkawi

Assistant lecturer of Obstetrics and Gynecology Faculty of Medicine -Ain Shams University

Dr. Amal Ahmad Abbas

Lecturer of Clinical Pathology
Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University

SUMMARY

This study was designed in a cross sectional manner to study the fetal birth weight and gestational age as a predictor for neonatal hypoglycemia in non diabetic pregnancy.

The study population was 2000 non diabetic pregnant were attending the Ain Shams University Maternity Hospital for delivery either vaginaly or by caesarean section aging 18-40 years ,gestational age 37-40 weeks having singleton pregnancy and the delivered new born birth weight is 2000 grams or more.

Birth weight of newborn of non diabetic mothers is taken and put in the weight for gestational age chart according to the gender to determine if the newborn is average for gestational age or large for gestational age or small for gestational age.

2 ml venous blood samples will be obtained from the neonate 2 hours after delivery under complete sterile condition to estimate the blood glucose level.

According to the results of the test the newborns were categorized into two groups:

1- Hypoglycemic group: when the blood glucose level is below 40 mg/dl.

First and foremost, I thank **ALLAH** who gave me the strength to follow this project through to completion as a part of his generous help throughout my life.

Also, I would like to express my deepest gratitude and appreciation to **Professor/ Ayman Abdel-Razek Abou-Alnoor** (Professor of Obstetrics & Gynecology, Ain Shams University) for the great support and encouragement he gave me, for giving me the honor of working under his supervision and for being an ideal model of a professor and a physician to follow.

I would like to deliver special thanks to **Dr. Sherif Fathi El-Makkawi** (Lecturer of Obstetrics & Gynecology, Ain Shams University) for his faithful supervision, precious help and continuous support throughout this work.

I would like to express my sincere appreciation to **Dr.Amal Ahmad Abbas** (Lecturer of Clinical Pathology, Ain Shams University) for her valuable supervision, generosity and continuous guidance throughout this work.

Also, I would like to express my thanks to all the patients who agreed to contribute in this study.

Last but not least I keep all my good feelings for those who shared me the moments of success.

Nehad Farouk

List of Contents

Title	Page No.
List of Figures	i
List of Tables	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literture	4
Hypoglycemia	4
Birth Weight	66
Patients and Methods	88
• Results	97
■ Discussion	110
• Summary	122
• Conclusion	124
■ Reference	125
Arabic Summary	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	The percent of hypoglycemic newborns a studied group	•
Fig. (2):	Association between neonatal hypoglycer versus normal group as regard birth w gestational age	veight for
Fig. (3):	Association between neonatal hypoglycer versus normal group as regard preeclampsis	<u> </u>
Fig. (4):	Association between neonatal hypoglycer versus normal group as regard smoking, as hypertension	sthma and
Fig. (5):	Correlation between neonatal hypoglycen versus normal group as regard obesity	

List of Tables

Table No.	Title Page No.	
Table (1):	Birth Weight (in g) for GA in Completed Weeks Canadian Male Singletons	95
Table (2):	Birth Weight (in g) for GA in Completed Weeks Canadian Female Singletons	
Table (3):	Distribution of the studied cases as regard birth weight for gestational age	
Table (4):	Distribution of the studied cases as regard general data	
Table (5):	Distribution of the studied cases as regard clinical data	
Table (6):	Distribution of the studied cases as regard parity	99
Table (7):	Distribution of the studied cases as regard gravidity	
Table (8):	Distribution of the studied cases as regard smoking, maternal hypertension and maternal asthma	
Table (9):	Distribution of the studied cases as regard mode of delivery	100
Table (10):	Distribution of the studied cases as regard fetal gender	100
Table (11):	Distribution of the studied cases as regard 5 minapgar score	101
Table (12):	Distribution of the studied cases as regard preeclampsia	
Table (13):	Distribution of the studied cases as regard obesity.	101
Table (14):	Association between neonatal hypoglycemic group versus normal group as regard birth weight for gestational age	102
Table (15):	Association between neonatal hypoglycemic group versus normal group as regard general data.	
	List of Tables	
Table No.	Title Page No.	
Table (16):	Association between neonatal hypoglycemic group versus normal group as regard fetus gender	103

Table (17):	Association between neonatal hypoglycemic group	
	versus normal group as regard parity	104
Table (18):	Association between neonatal hypoglycemic group	
	versus normal group as regard preeclampsia	104
Table (19):	Association between neonatal hypoglycemic group	
	versus normal group as regard smoking, asthma	
	and hypertension	105
Table (20):	Association between neonatal hypoglycemic group	
	versus normal group as regard mode of delivery	106
Table (21):	Correlation between neonatal hypoglycemic group	
	versus normal group as regard clinical data	107
Table (22):	Correlation between neonatal hypoglycemic group	
	versus normal group as regard obesity	107
Table (23):	Correlation between neonatal glucose level and	
	other variables among studied group	108
Table (24):	Logistic Regression to test for significant	
, ,	predictors of hypoglycemia	109

List of Abbreviations

Abb.	Meaning
%ile	Percentile
ACTH	Adreno cortico trophic hormone .
AGA	Average for gestational age.
BAER	Brain stem auditory evoked response.
BMI	Body mass index.
BP	Blood pressure.
BW	Birth weight.
Cm	Centimeter.
CNS	Central nervous system.
CS	Caesarian section.
DBP	Diastolic blood pressure.
DNA	Deoxyribo nucleic acid.
EDD	Expected date of delivery.
EEG	Electro encephalography.
Eg	For example.
ELBW	Extremely low birth weight.
FFA	Free fatty acids.
\boldsymbol{g}	Gram.
G-6-pase	Glucose 6 phosphatase.
GDM	Gestational diabetes mellitus.
GA	Gestational age.
Gest. age	Gestational age.
GH	Growth hormone.
GLUTs	Glucose transporters.
GTP	Guanine triphosghate.
H	Houre.
HAPO	Hyperglycemia and adverse pregnancy outcomes.
HHI	Hyperinsulinemic hypoglycemia of infancy.

H-MRS Proton magnetic resonance spectroscopy.

HTN Hypertension.

IGFs Insulin like growth factors.

IOM Institute of medicine.

IV Intravenous.

KATP Adenosine trinuceotide phosphate-regulating

potassium channel.

KG Kilograms.

KIR Inward rectifying potassium channel.

L Liter.

LGA Large for gestational age.LMP Last menstrual period.Mg/dL Milligram per deciliter.

Mg/kg/d Milligram per kilogram per day.

Mg/kg/min Milligram per kilogram per minute.

mmHg Millimeter mercury.Mmol/L Millimole per liter.Mol/min Mole per minute.

MRI Magnetic resonance imaging.MSH Melanocyte stimulating hormone.

Mu/ml Milliunit per milliliter.

N Number.

Ng/ml Nanogram per milliliter.
NICU Neonatal intensive care unit.

N.S Non significant.

NVD Normal vaginal delivery.

P Para

PET Positron emission tomography.

PG Prime gravida.

POMC Pro opio melanocyte stimulating hormone.

P-val. P-value.**S** Significant.

SBP Systolic blood pressure.SD Standard deviation.

SGA Small for gestational age.
SUR Sulfonylurea receptor gene.

Temp . Temperature.
u/l Units per liter.

USA United Stats of America.VEP Visual evoked potentials.

Vs Versus. WKs Weeks.

WHO International classification of diseases.

INTRODUCTION

Glucose is the essential substrate for brain function. Although important at all ages, it is particularly so in childhood because a normal supply is necessary to protect neural development (*Nicole et al.*, 2006).

It is the primary fuel used by the brain and is essential for cerebral metabolism. At birth, the healthy newborn adapts to an environment that provides an intermittent supply of glucose. Glycogenolysis and gluconeogenesis are therefore needed to maintain blood glucose levels (*Robin et al.*, 2002).

Neonatal hypoglycemia is a common problem affecting 3% to 29% of pregnancies (*Johnson*, *2003*).

Although hypoglycemia may be asymptomatic, many infants will exhibit symptoms, such as jitteriness, hypotonia, lethargy, irritability, apnea, tachypnea, poor feeding, hypothermia, and seizures (*Cornblauth and Lochord*, 2000).

Neonatal hypoglycemia may lead to significant neurologic consequences, such as permanent brain damage or death, if not treated promptly (*Amy*, 2009).

However, the exact point where damage occurs is unknown and may be different for each newborn (*Cornblath et al.*, 2000).

Certain situations place infants at increased risk for hypoglycemia, including prematurity, macrosomia, intrauterine growth restriction, maternal diabetes mellitus, and sepsis (*Amy*, 2009).

However, it is not possible to define a blood glucose level that requires intervention in newborn infant because there is uncertainty over the level and duration of hypoglycemia that cause damage, and little is known of the vulnerability, or lack of it, of the brain of infants at different gestational ages for such damage (*Marvin et al.*, 2000).