MRI Imaging of Cardiomyopathies

Essay

Submitted for the partial fulfillment of Master Degree in Radio-diagnosis

By

Omar Mohamed Mohab

M.B.B.Ch

Ain Shams University

Under Supervision of

Prof. Dr. Maha Hussein Anwar Abd ElSalam

Professor of Radio-diagnosis
Ain Shams University

Dr. Mary Yaftah Tadros

Lecturer of Radio-diagnosis
Ain Shams University

Faculty of Medicine Ain Shams University 2011

تصوير مرض اعتلال عضلة القلب بالرنين المغناطيسي

رسالة

توطئه للحصول علي درجة الماجستير في ألاشعة التشخيصية

مقدمة من

الطبيب/ عمر محمد مهاب بكالوريوس الطب و الجراحة – جامعة عين شمس

تحت إشراف أد/ مها حسين أنور عبدالسلام أستاذ الاشعة التشخيصية كلية الطب - جامعة عين شمس

د/ ماري بفتاح تادروس مدرس الاشعة التشخيصية جامعه عين شمس

> کلیه الطب جامعه عین شمس ۲۰۱۱

Summary

At present, MRI is probably the best technique for studying cardiomyopathies, **MRI** is better than echocardiography in determining the of cardiac type hypertrophy. Myocardial hypertrophy (concentric, asymmetric) can be the result of a variety of disorders. A combination of serial MRI sequences may be extremely helpful in the differential diagnosis.

MRI plays an important role in differentiating between various types of cardiomyopathies using different sequences of MRI combined with contrast enhanced images.

Cardiac MRI has become an important imaging technique for the diagnosis and follow up of cardiomyopathies. cardiac MRI allows an accurate evaluation of myocardial morphology, function, perfusion, and tissue damage in a non invasive way. For these reasons, cardiac MRI has become an important diagnostic tool for cardiomyopathies and is the new reference standard for the assessment of cardiac function.

MRI is of good diagnostic value in differentiating between different types of cardiomyopathies with special emphasis to hypertrophic and restrictive cardiomyopathies where it can precisely detect the structural changes in the

Table of Contents

List of figures	. i
List of abbreviations	vi
Introduction	. 1
Aim of the work	. 3
Chapter (1): Heart anatomy	4
Chapter (2): Pathology of cardiomyopathies	30
Chapter (3): MRI technique	39
Chapter (4): Manifestations of cardiomyopathies 8	30
Summary	15
References11	8
Arabic Summary	_

List of Figures

P	age	N	0.
_	450		

Fig.1(a,b,c)	general over view of the heart (axial ,coronal and sagittal views)	1
Fig. (2):	Right atrium	
Fig. (3):	Right and left atrial appendage	
Fig. (4):	Left atrium at end diastole	
Fig. (5):	Atrial (interatrial) septum	
Fig. (6):	Components of the right ventricle	
Fig. (7):	Moderator band and infundibulum	
Fig. (8):	Components of the left ventricle	
Fig. (9):	Left ventricular papillary muscles	
•		13
Fig. (10):	Essential characteristics of the morphologically right and left ventricle	16
Fig. (11):	Tricuspid and mitral valves	18
Fig. (12):	Aortic valve cusps in closed (a) and open (b) condition	18
Fig. (13):	Origin and proximal course of coronary arteries	19
Fig. (14):	Longitudinal section of cardiac muscle	24
Fig. (15):	Branching in cardiac muscle fibres	25
Fig. (16):	Cross section of cardiac muscle	26
Fig. (17):	Regular cardiac fibres in corss section	28
Fig. (18):	Endocardium of atrium	30
Fig. (19):	Endocardium of ventricle	30
Fig. (20):	Low power view of epicardium	31
Fig. (21):	High power view of epicardium	
Fig (22):	Transverse short axis section through the ventricles from patients with cardiomyopathy	

Fig. (23):	Example of a 6-element phased-array cardiac surface coil	42
Fig. (24):	A Coronal scout image in a patient where the coil placement is too low on the body	43
Fig. (25):	Typical setup of vectorcardiogram (VCG) system with four skin electrodes.	44
Fig. (26):	Example of MR-compatible monitoring unit	46
Fig. (27):	A Patient installation for pediatric MR examination under general anesthesia	48
Fig. (28):	Sensitivity encoding (SENSE) – parallel imaging	51
Fig. (29):	Prospective triggering	53
Fig. (30):	Comparison of retrospective cine MRI and real-time ungated cine MRI	55
Fig. (31):	T1- and T2-weighted techniques TSE image with fat suppression acquired in a patient with acute myocardial infarction	58
Fig. (32):	Gradient-echo cine MR image in cardiac short-axis	59
Fig. (33):	Balanced steady-state free precession (b-SSFP) cine MR image in cardiac shortaxis	60
Fig. (34):	CE-IR-MRI, spectral fat suppression is used to suppress the signal of chest wall and pericardial tissue to increase contrast between the myocardium and surrounding fat	62
Fig. (35):	Transverse T1-weighted TSE image and identical image with saturation band positioned over the atria	63
Fig. (36):	Short-axis perfusion MR images acquired during injection of contrast agent	64
Fig. (37):	Example of black-blood T1-weighted TSE MRI	65
Fig. (38):	CE-IR MRI, cardiac short–axis and vertical long–axis acquired 25 min after contrast injection	67
Fig. (39):	Axial plane through the mid-thorax	68
Fig. (40):	Cardiac axis imaging planes for the left ventricle; images acquired using a balanced steady-state free precession sequence	69

Fig. (41):	Alignment of SA stack for analysis of ventricular volumes on the HLA	70
Fig. (42):	Imaging planes that can be aligned from the basal SA slice	71
Fig. (43):	Alignment of the aortic valve plane	72
Fig. (44):	Alignment of the mitral valve plane	73
Fig. (45):	Alignment of the tricuspid valve plane	74
Fig. (46):	Alignment of the pulmonary valve plane	75
Fig. (47):	Alignment of the RV inflow/outflow view using a 3-point plane	76
Fig. (48):	Alignment of the thoracic aorta using a 3-point plane	77
Fig. (49):	The right (RPA) and left pulmonary arteries	77
Fig. (50):	Alignment of the right coronary artery (RCA) using a 3- point plane	78
Fig. (51):	Alignment of the left coronary artery "tangential view" using a 3-point plane	79
Fig. (52):	Alignment of the left coronary artery "perpendicular view" using a 3-point plane	80
Fig. (53):	Low spatial- and temporal- resolution real-time	81
Fig. (54):	Division of the LV into basal, mid-cavity, and apical SA segments for subsequent segment numbering	82
Fig. (55):	Subsequent division of SA slices into 6 basal	82
Fig. (56):	Bull's-eye plot representation of all segments of the left ventricle	83
Fig. (57):	Correlation between the most common coronary artery distribution pattern and the seven segments of the left ventricle	83
Fig. (58):	Extreme form of hypertrophic, obstructive cardiomyopathy in a young male teenager	85
Fig. (59):	Asymmetric septal hypertrophic cardiomyopathy with complete occlusion of the LVOT in a 69-year-old woman	86

Fig. (60):	Midventricular type of hypertrophic (obstructive) cardiomyopathy in a 55-years old woman	86
Fig. (61):	"Venturi" effect in hypertrophic (obstructive) cardiomyopathy	87
Fig. (62):	Apical form of hypertrophic cardiomyopathy in a 70-year-old woman presenting with negative Ts in anterior leads on ECG	89
Fig. (63):	Asymmetric septal hypertrophic cardiomyopathy in a 50-year-old man	91
Fig. (64):	Typical late myocardial enhancement pattern in asymmetric septal hypertrophic cardiomyopathy	92
Fig. (65):	Asymmetric septal hypertrophic obstructive cardiomyopathy in a 54-year-old woman treated with alcoholization of the first septal perforator coronary artery to reduce LV outflow tract obstruction	94
Fig. (66):	Idiopathic dilated cardiomyopathy in a 53-year-old man	0.7
Fig. (67):	CE-IR MRI with late imaging in 59-year-old male patient with idiopathic dilated cardiomyopathy	96
Fig. (68):	Idiopathic restrictive cardiomyopathy in a 73-year- old woman presenting with increased filling pressures	98
Fig. (69):	Typical flow curves in a patient with restrictive cardiomyopathy, using the velocity-encoded cine MRI technique	99
Fig. (70):	Ventricular septal motion in a patient with restrictive cardiomyopathy	100
Fig. (71):	Abnormal respiratory variation of ventricular septal shape and motion in a patient with constrictive pericarditis ("pathologic ventricular coupling")	101
Fig. (72):	Cardiac amyloidosis in a 67-year-old man	103
Fig. (73):	Cardiac amyloidosis in a 67-year-old man	103
Fig. (74):	Cardiac amyloidosis in a 71-year-old man	104

Fig. (75):	Cardiac sarcoidosis in a 41-year-old woman presenting with asymptomatic atrioventricular block. a T1-weighted fast SE-MRI
Fig. (76):	Cardiac sarcoidosis in a 48-year-old man. replacement
Fig. (77):	Calculation of T2-values of myocardium using a T2* weighted GRASE sequence
Fig. (78):	Arrhythmogenic right ventricular dysplasia Axial, T1-weighted fast SE-MRI obtained with the patient in prone position
Fig. (79):	Arrhythmogenic right ventricular dysplasia in a 53- year-old man
Fig. (80):	Arrhythmogenic right ventricular dysplasia in a 56-year-old man
Fig. (81):	Heavy fatty infiltration and thickening of RV free wall in female patient with arrhythmogenic right ventricular dysplasia
Fig. (82):	Severe RV dilation and dysfunction in a patient with arrhythmogenic right ventricular dysplasia114
Fig. (83):	End-stage arrhythmogenic right ventricular dysplasia with severe right ventricular and atrial enlargement. Axial cine MRI, using the b-SSFP technique, at three levels (a-c)
Fig. (84):	Non-compaction cardiomyopathy in a 26-year-old man
Fig. (85):	Non-compaction cardiomyopathy116
Fig. (86):	Non-compaction cardiomyopathy in a 56-year-old woman
Fig. (87):	Peripartum cardiomyopathy in a 29-year-old woman, 1 month post childbirth, presenting with cardiac failure

List of abbreviations

4ch : Four chambersAO : Ascending aorta

ARVD : Arrhythmogenic right ventricular dysplasia

AV node : Atrioventricular node

b.SSFP : Balanced steady state free precession **CE-IR** : Contrast enhanced inversion recovery

CMPs : Cardiomyopathies Ct : Crista terminals

DCM : Dilated cardiomyopathy
EPI : Echo planar imaging
FSE : Fast spin echo

Gd-DTPA : Gadolinium DTPA
GE : Gradient echo

GRE.EPI : Gradient echo-echo planar imaging **HCM** : Hypertrophic cardiomyopathy

HLA : Horizontal long axis IR : Inversion recovery

LA : Left atrium

LAAP : Left atrial appendage

LAD : Left anterior descending coronary artery

LCC : Left coronal cusps

Lcx : Left Circumflex coronary artery

LMS : Left main stem

LPA : Left pulmonary artery

LV : Left ventricle

LVOT : Left ventricle outflow tract
MRI : Magnetic resonance imaging

NCC : Non-coronal cusps

NSSR : Non-surgical septal reduction

PA : Pulmonary artery
PCA : Right coronary artery

PTSMA : Percutaneous transluminal septal myocardial ablation

PRESTO: Precoding inversion recovery

RAAP : Right atrial appendage
RBC : Red blood corpuscles
RCC : Right coronal cusps
RF : Radiofrequency

RPA: Right pulmonary artery

RV : Right ventricle

RVOT : Right ventricle outflow tract

SA : Short axis

: Spin-echo MRI **SEMRI** : Sensitivity encoding **SENSE** : Signal to noise ratio **SNR** : Saturation recovery SR **STIR** : Short tau inversion : Superior vena cava **SVC** : Time of inversion TI : Time of flight **TOF** : Time of recovery TR : Turbo spin echo **TSR** : Vector cardiography **VCG**

VLA : Vertical long axis

Introduction

Cardiomyopathies (CMPs) are myocardial diseases that involve the heart muscle itself resulting in contractile and relaxation dysfunction of both ventricles leading to progressive chamber dilatation and then hypocontractile walls. They are classified as dilated CMP, hypertrophic CMP, restrictive CMP, arrhythmogenic right ventricular (RV) CMP, specific CMP, and non-classified CMP (*Kramer et al.*, 2008).

Cardiac magnetic resonance imaging (MRI) is a noninvasive tool which is able to diagnose and differentiate cardiomyopathies in a single study. The assessment of essential information such as alterations of myocardial and ventricular geometry and function is possible with a high degree of accuracy and reproducibility, based on a small inter- and intra-observer variability. Thus, very small morphological and functional changes in different types of cardiomyopathy are detectable, thereby enabling the cardiologist to increase the safety of therapeutic decisions. Furthermore, MRI bears the potential to characterize tissue transformation in the different types of myocardial affections including ischemic, toxic, infiltrative or inflammatory forms (*Richardson et al.*, 2006).

Cardiac MRI has become an important imaging technique for the diagnosis and follow up of CMP. In fact, echocardiography, usually the first step in CMP evaluation, has some pitfalls, mainly its limited acoustic window. On the contrary, cardiac MRI allows a reproducible and accurate

evaluation of myocardial morphology, function, perfusion, and tissue damage in a noninvasive and "one-stop shop" way. For these reasons, cardiac MRI has become an important diagnostic tool for CMP and is the new reference standard for the assessment of cardiac function (*Earls et al.*, 2002).

MRI plays an important role in managing patients with cardiomyopathies by determining the presence or extent of ischemic scar or interstitial fibrosis using viability imaging. Delayed enhancement MRI is an excellent technique for accurate, reproducible detection and quantification of myocardial scar (*Lori et al.*, 2009).

Aim of the Work

To evaluate the role of MRI in the diagnosis, assessment of severity and follow-up of cases of cardiomyopathies.