J

قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنَا إِلَّا مَا عَلَيْمُ الحَكِيمُ إِنَّكَ أَنْتَ العَلِيمُ الحَكِيمُ

P

سورة البقرة: آية "٣٢".

The Effect of Polylactic Acid and Polyglycolic Acid on The Healing Of Bony Defect

(Clinical Study)

Thesis Submitted In Partial Fulfillment Of The Requirement For Master Degree In Oral Surgery

By

Yousef Ahmed Elmansi
(B.D.S 1999 Cairo University)

Faculty of Oral and Dental Medicine

Cairo University

2009

Supervisiors

Prof. Dr. Hussien Mohamed El Tanany

Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University

Assisstant Prof. Dr. Ihab Basiony

Assisstant Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University

المشرف ون

الاست اذ الدكت ور: حسين محمد الطنانى الاست الفرادة الفر و الوجه والفكين ، كلية طب الفر و الاسنان، جامعة القاهرة

الاست اذ مساعد الدكت ور: إيهاب بسيونى الستاذ جراحة الفم و الوجه والفكين المساعد ،كلية طب الفم و الاسنان، جامعة القاهرة

ACKNOLWEDGEMENT

First I have to express all gratitude and thankfulness to **ALLAH** whose magnificent help is the first factor in bringing this work to light and in everything we can and will do in life.

I would like to express my deep appreciation and profound gratitude to **Prof. Dr. Hussien Mohamed El Tanany** Professor of Oral and Maxillofacial Surgery,

Faculty of Oral and Dental Medicine, Cairo University, for his supervision, guidance, tremendous effort, beneficial advice and continuous support throughout this work.

I would like also to thank Ass.Prof. Dr. Ihab

Bassouiny Assistant Professor of Oral and Maxillofacial

Surgery, Faculty of Oral and Dental Medicine, Cairo

University, for his generous assistance, great help and encouragement.

My special thanks go to all my colloquies in the military hospitals for their sincere help and supporting throughout this work.

Finally, my sincere thanks are extended to all members of Oral and Maxillofacial Surgery Department, Faculty of Oral and Dental Medicine, Cairo University.

Dedication

<u>To my mother:</u> who has been inspiring and encouraging with unreserved understanding throughout the course of my study years.

<u>To my father</u> who was always beside me and support me through my whole life.

And to everyone who supported me in my life

God bless them all

Contents

1.	Introduction and review	.1
2.	Aim of the study	.29
3.	Material and methods	30
4.	Results	59
5.	Discussion	92
6.	Summary	101
7.	Conclusion	103
8.	References	.104
9.	Arabic summary	

List of tables:

Table	1	showing	the	test	group	cases,	their		ages,
sex and	loc	ation					p	.31	
Table 2	sh	owing the	contr	ol gro	oup cases,	their	ages,	sex	and
location							p.3	32	
Table 3	sho	owing the	clinica	l and	radiograp	hic res	ults of	the	test
group ca	ases								p.90
Table 4	sho	wing the cl	inical	and ra	diographi	c result	s of the	e co	ntrol
group ca	ases						p.	.91	

List of the figures:

Figure 1 showing the standard patient chart	p.33
Figure 2 showing the standard medical questionnaire	p.34
Figure 3 photograph of biopsy from the selected cases in our	
study	p.36
Figure 4 photograph showing outlines of pyramidal	
mucoperiosteal flap	p.39
Figure 5 photograph showing reflection of mucoperiosteal	
flap	p.40
Figure 6 photograph showing raising of mucoperiosteal flap	
and exposure of the field	p.41
Figure 7 photograph showing apicoectomy of the involved	
roots	p.42
Figure 8 photograph showing the cyst as one piece after	
being removed	p.44
Figure 9 photograph showing sponge type of the PLG used	
in this study	p.45
Figure 10 photograph showing powder type of the PLG used	
in this study	p.46
Figure 11 photograph showing obliteration of the cystic	
defect by sponge PLG	p.48
Figure 12 photograph showing obliteration of the cystic	
defect by sponge PLG	p.49
Figure 13 photograph showing obliteration of the cystic	
defect by sponge and powder PLG	p.50
Figure 14 photograph showing obliteration of the cystic	
defect by sponge and powder PLG	p.51
Figure 15 photograph showing cystic defect left without	
being obliterated by any bone substitute	p.52
Figure 16 photograph showing suturing and repositioning of	
the flap	p.53
Figure 17 photograph showing suturing and repositioning of	
the flap	p.54

Figure 18 photograph showing Computed Tomography	
machine used in this study	p.57
Figure 19 photoradiograph of Panoramic view for a case in	
the test group pre-operatively	p.64
Figure 20 photoradiograph of Occlusal view for a case in the	
test group pre-operatively	p.65
Figure 21 photoradiograph of Panoramic view for a case in	
the test group one month post-operatively	p.66
Figure 22 photoradiograph of Occlusal view for a case in the	
test group one month post-operatively	p.67
Figure 23 photoradiograph of Panoramic view for a case in	
the test group three months post-operatively	p.68
Figure 24 photoradiograph of Occlusal view for a case in the	
test group three months post-operatively	p.69
Figure 25 photoradiograph of Panoramic view for a case in	
the test group six months post-operatively	p.70
Figure 26 photoradiograph of Occlusal view for a case in the	
test group six months post-operatively	p.71
Figure 27a photoradiograph of Computed tomography	
showed a case in the test group pre-operatively	p.73
Figure 27b photoradiograph of Computed tomography	
showed a case in the test group pre-operatively	p.73
Figure 27c photoradiograph of Computed tomography	
showed a case in the test group pre-operatively	p.74
Figure 28a photoradiograph of Computed tomography	
showed a case in the test group six months post-operatively	p.75
Figure 28b photoradiograph of Computed tomography	
showed a case in the test group six months post-operatively	p.75
Figure 28c photoradiograph of Computed tomography	
showed a case in the test group six months post-operatively	p.76
Figure 29 photoradiograph of Panoramic view for a case in	
the control group pre-operatively	p.77
Figure 30 photoradiograph of Occlusal view for a case in the	
control group pre-operatively	p.78

Figure 31 photoradiograph of Panoramic view for a case in		
the control group one month post-operatively	p.80	
Figure 32 photoradiograph of Occlusal view for a case in the		
control group one month post-operatively	p.81	
Figure 33 photoradiograph of Panoramic view for a case in		
the control group three months post-operatively	p.82	
Figure 34 photoradiograph of Occlusal view for a case in the		
control group three months post-operatively	p.83	
Figure 35 photoradiograph of Panoramic view for a case in		
the control group six months post-operatively	p.84	
Figure 36 photoradiograph of Occlusal view for a case in the		
control group six months post-operatively	p.85	
Figure 37a photoradiograph of Computed tomography		
showed a case in the control group pre-operatively	p.86	
Figure 37b photoradiograph of Computed tomography		
showed a case in the control group pre-operatively	p.86	
Figure 37c photoradiograph of Computed tomography		
showed a case in the control group pre-operatively	p.87	
Figure 38a photoradiograph of Computed tomography		
showed a case in the control group six months post-		
operatively	p.88	
Figure 38b photoradiograph of Computed tomography		
showed a case in the control group six months post-		
operatively	p.88	

INTRODUCTION

AND REVIEW OF LITERATURE

The treatment of benign cysts of jaw is done through one of the following procedures:-

1) Enucleation

2) Marsupialization

Enucleation is defined as: complete removal of cyst wall and its contents. It is indicated in the following cases small or moderate size cysts, cyst not encroaching on neighboring vital structures (maxillary sinus- nasal cavity- inferior alveolar canal), cysts that do not involve soft tissue (intra bony cyst), Patient that can withstand surgical interference There are 3 types of enucleation:-

1) Enucleation with immediate closure:

If the cavity is small (in case of small size cyst), primary closure should be considered, soft tissues are approximated with sutures and wound heals with primary intention without packing.

2) Enucleation with packed open technique:

In case of large size cyst or infected cyst or severe bleeding, the wound should not be closed and healing will occur by secondary intension

with gradual apposition of granulation tissue from the borders of the cavity. In this case, sterile ribbon gauze packing (iodoform gauze, white heads varnish gauze, or tine of benzoin) may be placed in the created surgical defect to control bleeding to prevent large hematoma formation and to drain infection and to promote healing. The defect should be irrigated periodically and dressing replaced to remove any debris.

3) Enucleation with obliterating substance:

An obliterating material is put in the bone cavity to act as scaffold in large cysts. (Obliterating substance help the blood clot to organize into granulation tissue and permitting healing by secondary intention).

Enucleation leaves opening to the cyst covered by a mucoperiosteal flap and the space filled with blood clot which eventually organizes to form normal bone. It has been found that if the bleeding is stopped by firm pressure with dry gauze swab before suturing the reflected flap back into correct position, sufficient blood will subsequently seep into the operative area to fill the cavity. This ensures the retention of an amount of blood clot consistent with satisfactory organization and, later, new bone formation.

Marsupialization is a technique that treats cysts by surgically producing a window in the capsular wall to relieve intracystic tension. This is done only to large cysts. Otherwise continuity of cyst membrane will be re-established and the cyst will refill and continue to expand. Marsupialization is permanent

treatment for soft tissue cyst as ranula, but temporary treatment for intra bony cyst, it should be followed by enucleation; the lesion is initially and temporary treated by marsupialization until the cyst is reduced in size and the enucleation is done to remove all remaining pathology.

Marsupialization is indicated in large cysts that are weakening the jaw (endanger continuity of jaw), soft tissue cysts, cysts approximating vital teeth, cysts related to maxillary sinus or inferior alveolar canal, dentigerous cyst or eruption cyst to allow teeth to erupt, elderly patient and inaccessible cyst as in maxillary tuberosity area.

Healing of bone is unique phenomenon occurring in human beings. recent advancements in the understanding of bone physiology, immunologic concepts, tissue banking procedures and surgical principles have made possible the successful reconstruction of most maxillofacial bony defects. (1)

Normal bone healing involves immediate tearing of vessels of bone in haversian canals periosteum and marrow cavities. Which leads to blood clot fills the bony defect then organization of blood clot begins within the first twenty hours with leukocytic migration with capillary budding and fibroblastic proliferation, then clot is reabsorbed by macrophages and gradually replaced by fibrin proliferation then clot is reabsorbed by macrophages and gradually tissue fills the bony cavity. Subsequently, new