



## Essay

Submitted for partial fulfillment of Master degree
In General surgery
By
Wael Abdo Abdo Mohamed Abd-Elgawad
(M.B., B.CH.)

**Supervisors** 

## Prof. Dr. Mahsoub Mourad Amin

Professor and Chairman of General and Vascular Surgery Dept., Faculty of Medicine - Al-Azhar University

# Prof. Dr. Magdy Salah El-Din Hussain

Professor of General Surgery Faculty of Medicine - Al-Azhar University

# Prof. Dr. Mohamed Mostafa Zahran

Professor of vascular Surgery Military Medical Academy

# Dr. Mohamed Alsagher Alhewy Mohamed

Lecturer of Vascular Surgery Faculty of Medicine- Al-Azhar University

> Faculty of Medicine Al-Azhar University 2013

## Acknowledgement

First and foremost, I feel always indebted to ALLAH, the most kind and the most merciful, who guided and aided me to bring this essay to light.

I would like to express my deepest gratitude to Prof. Dr. Mahsoup Mourad Amin, Professor and head of General and Vascular Surgery Departments, Faculty of Medicine, Al-Azhar University, for his continuous encouragement, kind support and appreciated suggestions that guided me to accomplish this essay.

Words are not enough to express my greatest thanks and deepest appreciations to Prof. Dr. Magdy Salah El-Din Hussain, Professor of General surgery, Faculty of Medicine, Al-Azhar University, for his comments, ideas and constrictive criticism. He gave me privilege to work under his supervision and valuable advices.

I am also grateful to Prof. Dr. Mohamed Mostafa Zahran, Professor of Vascular Surgery department, military medical academy, who freely gave his time, effort and experience along with continuous guidance through out this essay.

Special thanks are extended to Dr. Mohamed Al-Sagher Al-Hewy, Lecturer of Vascular Surgery, Faculty of Medicine, Azhar University, for his constant encouragement and advice whenever needed.

# To whom I am Indebted

## **Contents**

| Chapter | Title                                        | Page |
|---------|----------------------------------------------|------|
| 1       | Introduction                                 | 1    |
| 2       | Aim of the essay                             | 2    |
| 3       | Anatomy of venous system of lower limbs      | 3    |
| 4       | Aetiology of varicose veins                  | 27   |
| 5       | Pathophysiology of varicose veins            | 32   |
| 6       | Primary varicose veins                       | 34   |
| 7       | Secondary varicose veins                     | 49   |
| 8       | Clinical picture of varicose veins           | 50   |
| 9       | Investigations of varicose veins             | 59   |
| 10      | Traditional treatment of varicose veins      | 80   |
| 11      | New methods for management of varicose veins | 92   |
| 12      | Comparison between different techniques      | 115  |
| 13      | Summary and conclusion                       | 121  |
| 14      | References                                   | 125  |
| 15      | Arabic summary                               |      |

## Tables

| Table | Title                                                                                                 | Page |
|-------|-------------------------------------------------------------------------------------------------------|------|
| 1     | Historic and New Anatomic Terms of Lower Extremity Veins                                              | 26   |
| 2     | CEAP classification                                                                                   | 47   |
| 3     | Advanced CEAP                                                                                         | 47   |
| 4     | Symptoms of varicose veins                                                                            | 50   |
| 5     | Differential diagnosis of ankle edema                                                                 | 51   |
| 6     | Differential diagnosis for varicose vein pain                                                         | 53   |
| 7     | Intraoperative adverse events of radiofrequency                                                       | 97   |
| 8     | Postoperative adverse events of radiofrequency                                                        | 97   |
| 9     | Volume in cm3 of a Venous Segment Calculated from the Formula of the Cylinder                         | 111  |
| 10    | Concentrations and Volumes for Polidocanol Foam                                                       | 112  |
| 11    | Likelihood of specific adverse events associated with each of the three minimally invasive techniques | 119  |

## **Figures**

| Figure | Title                                                                                                            | Page |
|--------|------------------------------------------------------------------------------------------------------------------|------|
| 1      | Votive tablet found at the base of the Acropolis in Athens,<br>the earliest known illustration of varicose veins | 3    |
| 2      | The saphenous vein by Leonardo da Vinci                                                                          | 4    |
| 3      | The venous system according to Vesalius                                                                          | 4    |
| 4      | Great saphenous vein (GSV) and small saphenous vein (SSV) terminal valve (TV) and pre-terminal valve (PTV)       | 9    |
| 5      | Relationship between the GSVand tributaries                                                                      | 12   |
| 6      | Relationship between the GSVand tributaries                                                                      | 14   |
| 7      | The saphenopopliteal junction—anatomical variations                                                              | 15   |
| 8      | Transverse scan of the posterior thigh and leg region.                                                           | 17   |
| 9      | Relationship between the fascia and veins of the lower extremity                                                 | 21   |
| 10     | The anatomy of the deep venous system.                                                                           | 23   |
| 11     | Anatomy of venous valves of lower limbs                                                                          | 25   |
| 12     | Light micrographs of the intima in normal and varicose long saphenous vein.                                      | 35   |
| 13     | Electron micrographs of the intima in normal and varicose long saphenous vein                                    | 36   |
| 14     | Cytological changes in the endothelium.                                                                          | 37   |
| 15     | Separation of the endothelial cells.                                                                             | 38   |
| 16     | Effect of loss of the endothelial cell barrier                                                                   | 39   |
| 17     | Normal and abnormal smooth muscle cells                                                                          | 40   |
| 18     | Severely damaged smooth muscle cells of distal calf varicosities                                                 | 42   |
| 19     | Phagocytic activity of varicose veins                                                                            | 43   |
| 20     | Illustrative ambulatory venous pressure measurements.                                                            | 44   |
| 21     | the cusps of the valves close to prevent backward flow of blood.                                                 | 44   |
| 22     | This illustration shows the relationships of subcutaneous veins to superficial and deep fascia.                  | 46   |
| 23     | a hand-held Doppler probe being used to examine a leg vein                                                       | 60   |
| 24     | saphenous eye'-a transverse ultrasound image of the GSV in the thigh                                             | 63   |
| 25     | Transverse view of common femoral vein and artery in the right groin: 'Mickey Mouse' sign                        | 64   |
| 26     | B mode ultrasound image of the great saphenous vein (GSV)                                                        | 67   |
| 27     | Anterior accessory saphenous vein (AASV) and the alignment sign.                                                 | 68   |

| 28 | B-mode ultrasound image just below the knee in two different limbs.                                                   | 68  |
|----|-----------------------------------------------------------------------------------------------------------------------|-----|
| 29 | Relationship between the great saphenous vein and a tributary in the mid thigh area                                   | 69  |
| 30 | Position of leg and air chamber of plethysmograph (APG) for recording pressure and volume change                      | 71  |
| 31 | Venogram of the leg to show the deep veins                                                                            | 73  |
| 32 | The use of elastic bandages or stockings                                                                              | 81  |
| 33 | Great saphenous vein stripping                                                                                        | 85  |
| 34 | Triple ligation of perforators                                                                                        | 87  |
| 35 | The VNUS Closure© device                                                                                              | 93  |
| 36 | Closure RFS catheter (A) and VNUS ClosurePLEX catheter                                                                | 94  |
| 37 | VNUS ClosurePLUS 6 Fr catheters (A) and 8 Fr catheter                                                                 | 94  |
| 38 | Tip of the ClosureFAST                                                                                                | 96  |
| 39 | Closure of the saphenous vein using RF                                                                                | 97  |
| 40 | Flow from common femoral vein (CFV) through terminal greater saphenous vein                                           | 99  |
| 41 | Diode laser device wavelength 810nm                                                                                   | 102 |
| 42 | Puncture of GSV above knee                                                                                            | 103 |
| 43 | Laser fiber in the vein with tumescent anesthesia surrounding it                                                      | 103 |
| 44 | Using the laser fiber to occlude the vein                                                                             | 105 |
| 45 | Axial image of the thigh portion of the great saphenous vein (GSV) before and after injection of tumescent anesthesia | 106 |
| 46 | Axial image of the great saphenous vein (arrows) in the thigh 4 weeks after endovenous thermal ablation.              | 106 |
| 47 | Nd: YAG laser device with automatic pullback motor, wavelength 1320nm                                                 | 107 |
| 48 | Less ecchymosis is noted with the use of 1320nm wavelength                                                            | 109 |
| 49 | Foam (6 mL) was produced with a double syringe and a three-way stopcock                                               | 110 |
| 50 | Injecting Sclerofoam using a butterfly needle                                                                         | 111 |
| 51 | Using microfoam for treatment of varicose veins                                                                       | 114 |

## **Abbreviations**

| 3D   | Three Dimenion                                         |
|------|--------------------------------------------------------|
| AASV | Anterior Accessory Saphenous Vein                      |
| APG  | Air Plethysmo Graphy                                   |
| AV   | Arterio Venous                                         |
| AVP  | Ampulatory Venous Pressure                             |
| CEAP | Clinical, Eitiological, Anatomical, Pathological Grade |
| CFA  | Common Femoral Artery                                  |
| CFV  | Common Femoral Vein                                    |
| СТ   | Computed Tomographic                                   |
| СТУ  | CT Venography                                          |
| cw   | Continous Wave                                         |
| DVT  | Deep Venous Thrombosis                                 |
| EVL  | Endovenos Laser                                        |
| EVLT | Endovenous Laser Therapy                               |
| GSV  | Great Saphenous Vein                                   |
| LEED | Linear Endovenous Energy Density                       |
| LSV  | Long Saphenous Vein                                    |
| MDCT | Multi Detected CT                                      |
| MRV  | Magnetic Resonance Venography                          |
| PASV | Posterior Anterior Saphenous Vein                      |
| PTV  | Pre Terminal Valve                                     |
| RER  | Rough Endoplasmic Reticulum                            |
| RFA  | Radio Frequency Ablation                               |
| SFJ  | Sapheno Femoral Junction                               |
| SMCs | Smoth Muscle Cells                                     |
| SPG  | Sapheno Popliteal junction                             |
| SSV  | Small Saphenous Vein                                   |
| STS  | Sodium Tetradecyl Sulphate                             |
| TA   | Tumescent Anesthesia                                   |
| TE   | Thigh Extention                                        |
| TEM  | Transmission Electron Microscope                       |

| TUS  | Triplex Ultrasound                   |
|------|--------------------------------------|
| TV   | Terminal Valve                       |
| UGFS | Ultrasound Guided Foam Sclerotherapy |

#### Introduction

Varicose veins are one of the most common conditions requiring surgical treatment; in adult western population visible varicose veins are present in 20-25 % of women and 10-15 % of men. Common symptoms attributable to varicose veins include poor cosmoses, ache, itching and less common symptoms include haemorrhage, varicose ulcer and thrombophlebitis (*Bartholomew et al., 2005*).

Over the centuries surgery was the standard treatment of varicose veins, drawbacks, to surgery include surgical and anaesthetic risk, postoperative ecchymosis, length of recovery, significant infection rate. High incidence of postoperative parasthesia, pain and recurrence of varicosities which may be as high as 70 % at 10 years (Winterborn and Earshaw, 2006).

The challenge for surgeons dealing with varicose veins has always been balancing a cosmetically acceptable results with a low incidence of recurrence and complications (*Teruya and Ballard*, 2001)

Less invasive treatment modalities seek to reduce risk and morbidity. These include radiofrequency ablation, endovenous laser therapy, transilluminated power phlebectomy and foam sclerotherapy. Represent effective and possible superior alternatives to traditional saphenous vein stripping and stab avulsion of varicose veins (*Teruya and Ballard, 2001*).

The underlying principle of RFA involves the delivery of thermal energy derived from an electric current to the venous segment to be treated. This is achieved using a bipolar endovenous catheter with a typical power of 2–4 W, which is used to generate temperatures of 85–1208C. As the procedure relies on direct contact between the RFA catheter and the vein wall, it is essential that the vein is emptied of blood during ablation (achieved using Trendelenberg position, use of

tumescent anaesthesia and extrinsic compression). There is an in-built feedback mechanism, which evaluates the vein wall impedance and can adjust the energy delivery accordingly to ensure that the fibre temperature remains consistent (Gohel and Davies, 2009).

RFA is established as an acceptable and efficacious endovenous treatment modality for the treatment of varicose veins. Although many treatment variables are highly dependent on clinician preference, principles for the safe introduction of a RFA service and standards of care are proposed in this document. Clinicians performing RFA for the treatment of varicose veins should ensure accurate audit of interventions and outcomes. Further consensus is needed on the optimal post-procedural treatment regimen (*Zan et al., 2007*).

### Aim of the essay

This essay aims to evaluation of the efficacy and safety of radiofrequency in the management of primary varicose veins measured against symptom relief, patient satisfaction and clinical outcome.

#### **ANATOMY OF VENOUS SYSTEM OF LOWER LIMBS**

Venous anatomy is very variable in some parts but more constant in other parts of the lower limbs. In the past, a wide range of terms including eponymous names was used to describe lower limb veins. A recent publication by *Caggiati et al.* unified terminology and definitions for the venous system with particular reference to the lower limb, and the present consensus is based on that presentation. It uses English terms to describe veins rather than less generally used Latin terms or eponymous nomenclature (*Cavezzi et al, 2006*).

#### **Historical background:**

The fascinating history of venous surgery has been the subject of many reviews and monographs. The first written record of varicose veins and suggestions on treatment were found in the Ebers papyrus around 1550 BC. The first illustration of a varicose vein, discovered in Athens at the foot of the Acropolis, dates back to the 4th century BC. It is a commonly reproduced votive tablet that shows a large leg with a serpentine varicose vein on its medial aspect (*Majno*, 1975).



**Fig. (1)**: Votive tablet found at the base of the Acropolis in Athens, the earliest known illustration of varicose veins **(Gloviczki, 2006)**.

The 15<sup>th</sup> century brought new interest in venous anatomy, as illustrated in Leonardo da Vinci's drawings of the human body, and in the 16th century, the anatomy of the venous system was presented in great details in the works of Andreas Vesalius *(Gloviczki, 2006).* 




Fig. (2): The saphenous vein by Leonardo da Vinci (Gloviczki, 2006).

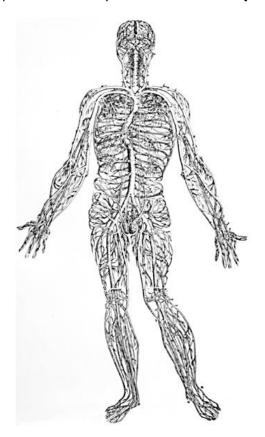



Fig. (3): The venous system according to Vesalius (1545) (Caggiati et al., 2006).

#### **Developmental anatomy:**

By the fourth week of the intrauterine fetal life, a swelling of the lateral embryonic body wall forms the limb buds. They are richly vascularized, where the arteries are axial, while the veins are marginal. There are a couple of veins present on each side. The anterior marginal vein is pre-axial and the posterior marginal vein is post-axial; both drain separately into the posterior cardinal vein (Williams et al., 1989).

In the adult life the pre-axial vein of the lower limb become the great or long saphenous vein, which more proximally gives rise to the proximal femoral and the external iliac veins. The post-axial vein becomes the lesser or the short saphenous vein, which more proximally gives rise to the popliteal, inferior gluteal and internal iliac veins as a portion of the posterior cardinal vein (Williams et al., 1989).

## Histology (Microanatomy) of the veins of the lower limbs:

Veins are characterized by thin wall in comparison to arteries of similar size and by large capacitance. Wall thickness is not correlated exactly to the size of the vein, e.g. the wall is thicker in veins of the leg than it is in veins of a similar size of the arm (*Gray's*, 2005).

Veins have walls consisting of three concentric layers:

- The intima (tunica intima), is the inner most layer. Its main component, the endothelium which is a monolayer of flattened polygonal cells.
- 2. The media (tunica media), is made of muscle tissue, elastic fibers and collagen.
- The adventitia (tunica adventitia), is the outer coat of the vessel, and consists of connective tissue, nerves and vessel capillaries. It links the vessel to the surrounding tissues (Gray's, 2005)