SHORT LENGTH VERSUS CONVENTIONAL IMPLANTS IN REHABILITATION OF COMPLETELY EDENTULOUS MANDIBLE

Thesis Submitted to the Faculty of Dentistry Ain-shams University for Partial Fulfillment of Doctorate Degree Requirements in Oral and Maxillofacial Prosthodontics

By

AHMED MOHAMED ABDEL AZIEM LASHEEN

B.D.S. Oral and Dental Medicine
Faculty of Oral and Dental Medicine Cairo University
(2007)

M.D.S. Oral and Maxillofacial Prosthodontics Faculty of Oral and Dental Medicine Cairo University

(2013)

Department of Oral and Maxillofacial Prosthodontics Faculty of Dentistry Ain-Shams University

(2018)

بسم الله الرحمن الرحيم

وَ عَلَّمَكُ مَا لَمْ تَكُنْ تَعْلَمُ وَكَانَ فَضْلُ اللهِ عَلَيْكَ وَكَانَ فَضْلُ اللهِ عَلَيْكَ عَلَيْكَ عَظِيماً عَظِيماً

صدق الله العظيم

SUPERVISORS

PROF. ENGY AMEN TALLAT

Professor of Oral & Maxillofacial Prosthodontics Faculty of Dentistry Ain-shams University

PROF. FARDOS NABIL FATHY RIZK

Professor of Oral & Maxillofacial Prosthodontics Vice Dean for Research and Post-Graduate Affairs Faculty of Dentistry-British University in Egypt

DR. MAHMOUD EL MOUTASSIM BELLAH SALAH-ELDIN EL HOMOSSANY

Lecturer of Oral & Maxillofacial Prosthodontics Faculty of Dentistry Ain-shams University

DR. HEBA ALLAH TAREK MOHAMED MAHMOUD

Lecturer of Oral & Maxillofacial Prosthodontics Faculty of Dentistry Ain-shams University

Acknowledgment

First of all, my prayerful thanks to **Allah**, for everything I have and for the strength to complete this study.

It is a great honor to express my sincere gratitude to **Prof. Ingy Amin Tallaat**, Professor of Oral and Maxillofacial Prosthodontics, Faculty
of Dentistry, Ain Shams University, for her valuable guidance, efforts,
kindness and experience to make this thesis possible.

My profound appreciation to **Prof. Fardos Nabil Fathy Rizk**, Professor of Oral and Maxillofacial Prosthodontics and Head of Removable Prosthodontics Department, Faculty of Dentistry, British University, who has always been my inspiring teacher and under whose supervision I had the honor to finish this work.

My due thanks to **Dr. Mahmoud El Moutassim Bellah**, Lecturer of Oral & Maxillofacial Prosthodontics, Faculty of Dentistry Ain shams University, for his kindness, cooperation and continuous concern.

Special thanks and appreciation to **Dr. Heba Allah Tarek**, Lecturer of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, for her unlimited effort, supervision and generous assistance.

Special thanks to **Dr. Mohamed Shady Nabhan**, Lecturer of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, for his knowledge, and valuable assistance.

I would like to thank **Dr. Shaimaa Abo El Sadat**, Lecturer of Oral Radiology, Faculty of Dentistry, Ain shams University, for her exclusive knowledge, experience and endless guidance.

Last but not least, I would like to thank my colleagues and all the staff members of Oral and Maxillofacial Prosthodontic Department, Faculty of Dentistry, Ain shams University for their great enthusiastic support to complete this work.

Dedication

To my Parents, who guided and supported me throughout my life.

To my Wife who gave me continuous encouragement and endless care.

To my adorable Sister and to my lovely Daughters.

Table of contents

Title	Page
Introduction	1
Review of Literature	
Edentulism	3
Alveolar Bone Loss	4
Management of Edentulous Patients	6
Dental Implants	7
Osseointegration	8
Implant Success Criteria	9
Bone Quantity (Available Bone)	11
Bone Quality (Density)	12
Overdentures and Implant Prosthesis	14
Prosthetic Options in Implant Dentistry	14
Mandibular Overdenture Treatment Options	15
Classification of Prosthesis Movement	16
Patients Satisfaction with Overdentures	16
Advantages of Implant Overdentures	17
Disadvantages of implant Overdentures	18
Implant Overdenture Attachments	19
Prosthetic Space Analysis	23

Solitary versus Splinted Designs	23
Implant Number and Position	26
Implant Length and Diameter	28
Short Dental Implants	30
Radiographic Imaging Techniques	37
Aim of Study	41
Materials and Methods	42
Results	81
Discussion	95
Discussion of Materials and Methods	95
Discussion of Results	107
Summary and Conclusions	113
References	116

List of Figures

Figure	Title	Page
Fig.1a	Edentulous Maxillary Arch	43
Fig.1b	Edentulous Mandibular Arch	43
Fig.2a	Maxillary Primary Impression	47
Fig.2b	Mandibular Primary Impression	47
Fig.3	Diagnostic Jaw Relation Record	47
Fig.4a	Trial Setup of Artificial Teeth	47
Fig.4b	Arch Relationship	47
Fig.4c	Inter-Arch Space	47
Fig.4d	Space for Lower Denture	47
Fig.5	Diagnostic Panoramic Radiograph	48
Fig.6a	Final Maxillary Impression	49
Fig.6b	Final Mandibular Impression	49
Fig.7a	Hanau Spring-Bow and Semi Adjustable Articulator	49
Fig.7b	Maxillary Face-Bow Record	49
Fig.8	Face-Bow Record Transfer	50
Fig.9	Centric Occluding Relation Record	50
Fig.10a	Protrusive Wax Record	51
Fig.10b	Horizontal Condylar Path Calibration	51
Fig.11	Lateral Condylar Path Calibration	51
Fig.12	Setting of Mandibular Teeth	53
Fig.13	Elimination of Maxillary Buccal Cusp Contacts	53
Fig.14	Laboratory Remount	54
Fig.15	Clinical Remount	54

Fig.16a	Denture Duplication	55
Fig.16b	Clear Template Production	55
Fig.17	Radiographic Stent	55
Fig.18a	Cone Beam Computed Tomography	56
Fig.18b	Right Side Measures	56
Fig.18c	Left Side Measures	56
Fig.19	Surgical Template	56
Fig.20a	Short Implants	60
Fig.20b	Conventional Implants	60
Fig.20c	Implant Sterile package	61
Fig.21	Surgical kit	61
Fig.22	Surgical Motor	61
Fig.23	Mid-crestal and Labial incisions	64
Fig.24	Mucoperiosteal Flap Reflection	64
Fig.25a	Point Drill	64
Fig.25b	Twist Drill	65
Fig.26a	Initial Drill	65
Fig.26b	Parallel Pins	65
Fig.26c	Final Drill	66
Fig.27	Fixture Installation	66
Fig.28	Full Implant Insertion	66
Fig.29	Mucoperiosteal Flap Repositioned and Sutured	67
Fig.30	Post-operative Panoramic Radiograph	67
Fig.31	Ball Abutment Package	70
Fig.32	Ball Attachment Components	70
Fig.33	Ball Abutments Installation	70

Fig.34	Rubber Base Impression Test	71
Fig.35	Fitting Surface Depressions	71
Fig.36	Two Vent Holes	71
Fig.37	Block-out Shims and Metal Housings in place	72
Fig.38	Hard Denture Liner	72
Fig.39	Hard Liner Preparation	72
Fig.40	Pick-up of Metal Housings	72
Fig.41	Patient Positioning	74
Fig.42	Chin-Cup and Head Strap	74
Fig.43	Axial, Coronal and Sagittal Planes Adjustment	76
Fig.44	Mesial bone height measure in sagittal plane. Group I	77
Fig.45	Distal bone height measure in sagittal plane. Group I	77
Fig.46	Mesial bone height measure in sagittal plane. Group II	77
Fig.47	Distal bone height measure in sagittal plane. Group II	78
Fig.48	Buccal bone height measure in coronal plane.Group I	78
Fig.49	Lingual bone height measure in coronal plane.Group I	78
Fig.50	Buccal bone height measure in coronal plane.Group II	79
Fig.51	Lingual bone height measure in coronal plane.Group II	79
Fig. 52	Bar chart representing effect time on marginal bone	83
11g. 32	loss for Group (I) patients.	03
Fig. 53	Bar chart representing effect time on marginal bone	87
	loss in Group (II) patients.	
Fig. 54	Bar chart representing mean values of marginal bone	91
11g. 54	loss in the two studied groups.	71
		•

List of Tables

Table	Title	Page
(I)	Mean values, standard deviation (SD) values and Paired t-Test for marginal bone loss in Group (I) patients during the follow up period.	82
(II)	Mean values, standard deviation (SD) values and Paired t-Test for marginal bone loss in Group II patients during the follow up period.	86
(III)	Mean values, standard deviation (SD) values and Student-t Test for the amount of marginal bone loss in the two studied groups.	90

Introduction

The traditional treatment plan for the edentulous patient is the complete removable maxillary and mandibular dentures. However, such prostheses, especially the mandibular denture, have well-documented problems such as lack of stability and retention. This is affected by the height and shape of the mandibular ridge as continued loss of alveolar bone can occur over time, and cause previously stable dentures to become ill-fitting.

Subsequent bone loss leads to a decrease in the size of the denture bearing area, thereby reducing denture stability which causes insufficient retention of the lower denture, difficulties with eating and speech and altered facial appearance.

Osseo-integrated dental implants with implant-supported or retained mandibular overdentures provided an alternative to the essentially palliative therapy offered by conventional dentures. The McGill Consensus Statement and the weight of supporting scientific literature have shown that implant supported and retained mandibular overdentures are superior to the conventional complete denture. (1)

For the edentulous mandible a two-implant overdenture treatment relative to conventional denture treatment provided enhanced prosthesis retention, stability, improved masticatory performance, oral health-related quality of life and patient satisfaction have been identified for patients having persistent functional problems with an existing mandibular conventional full denture due to atrophic mandibular arch.

In clinical situations where bone resorption has occurred following tooth loss, various strategies have been proposed to overcome the anatomic and physiologic limitations of implant placement.

Surgical protocols employing bone grafting, inferior alveolar nerve transposition, distraction osteogenesis and sinus augmentation have been suggested for standard implants rehabilitation treatments, while these methods have obtained a level of success, many patients are unable or unwilling to undergo such surgical procedures due to high cost, the need for multiple surgeries and poor general health. (2)

With the introduction of short implants, dental implant rehabilitation for resorbed ridges is a less complex, less traumatic and more safe treatment option for edentulous patients showing bone height and volume limitations.

Biomechanically, short implants might be disadvantageous specially when combined with poor bone quality and high occlusal loads. However, the majority of the stress concentration is distributed at the level of the first few threads to the crestal cortical bone when an implant is loaded and that an implant with a larger diameter helps to reduce the maximum stress/strain values at the bone-implant interface. (3)

The development of implant design, surface structure, and improved surgical technique has given reason to re-evaluate previous results in clinical situations with bone limitations. Several studies have demonstrated that short dental implants could be used successfully. However, the clinical effectiveness of short length implants versus conventional length implants was not thoroughly investigated. (4)