

DESIGN OF TIME BASED ANALOG TO DIGITAL CONVERTER (TB-ADC): NEW DESIGN METHODOLOGY FOR VOLTAGE-TO-TIME-CONVERTER (VTC) CIRCUITS

By

Mohammed Wagih Emam Ismail

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

DESIGN OF TIME BASED ANALOG TO DIGITAL **CONVERTER (TB-ADC): NEW DESIGN METHODOLOGY FOR VOLTAGE-TO-TIME-CONVERTER (VTC) CIRCUITS**

By

Mohammed Wagih Emam Ismail

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Serag E. D. Habib

Dr. Hassan Mostafa

Professor

Assistant Professor

Department

Department

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

DESIGN OF TIME BASED ANALOG TO DIGITAL CONVERTER (TB-ADC): NEW DESIGN METHODOLOGY FOR VOLTAGE-TO-TIME-CONVERTER (VTC) CIRCUITS

By

Mohammed Wagih Emam Ismail

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:
Prof. Serag E. D. Habib, Thesis Main Advisor
Prof. Muhammed Riad El Ghoneimy, Internal Examiner
Prof. Hani Fikry Ragai, External Examiner (Faculty of Engineering, Ain Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

Engineer's Name: Mohammed Wagih Emam Ismail

Date of Birth: 23/11/1990 **Nationality:** Egyptian

E-mail: wagih.ismail@cu.edu.eg

Phone: 01120393908

Address: Electronics and Communications Engineering

Department, Cairo University,

Giza 12613, Egypt

Registration Date: 01/10/2012 **Awarding Date:** .../.../...

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Serag E. D. Habib Dr. Hassan Mostafa

Examiners:

Prof. Serag E. D. Habib

Prof. Muhammed Riad El Ghoneimy

Prof. Hani Fikry Ragai

(Thesis Main Advisor)

(Internal Examiner)
(External Examiner)

(Faculty of

Engineering, Ain Shams University)

Title of Thesis:

Design of Time Based Analog to Digital Converter (TB-ADC): New Design Methodology for Voltage-to-Time-Converter (VTC) Circuits

Key Words:

Voltage to Time Converter (VTC); Analog to Digital Converter (ADC); Software Defined Radio (SDR); Time to Digital Converter (TDC)

Summary:

In this thesis, we introduce a new design methodology for Voltage-to-Time Converters (VTCs) Circuits suitable for Time-Based Analog-to-Digital Converters (TB-ADC). This new methodology has been tested by designing an 8-bit low power TB-ADC as one of the alternatives to the traditional ADCs. The proposed ADC consists of two stages. The first stage is the VTC and the second stage is the Time to Digital Converter (TDC). The percentage of digital to analog part is greater than the traditional ADC and it is an Op-Amp-less design.

Acknowledgments

Foremost, I take this opportunity to express my deep gratitude and appreciation to my advisors Prof. Serag E. D. Habib and Dr. Hassan Mostafa for their continuous help, support, guidance, enthusiasm, patience, and encouragement. I learned a lot from their vision and dedication. I could not have imagine having better advisors.

I want to thank Dr. Mohamed Refky Amin for his support, time, guidance, and help. He dedicated a lot of time and effort to help me in finishing this dissertation. In addition, I want to thank Dr. Hossam A. H. Fahmy for his time and advices. He held dozen of meetings to help me in preparing for my PhD journey.

Finally, I would like to thank my friends who supported me, specially EECE department teaching assistants, through this venture and tried to help me to the best of their abilities.

Dedication

I dedicate this dissertation to my family for the unceasing encouragement, support and attention. I want to thank them for the continuous supply of love and care. I own them every single achievement in my life.

Table of Contents

A	cknowledgments	i
D	Dedication	iii
Ta	able of Contents	v
Li	ist of Tables	ix
Li	ist of Figures	xi
Li	ist of Symbols and Abbreviations	xiv
Li	ist of Publications	xvii
A	bstract	xix
1	Introduction1.1 Motivation1.2 Proposed Work1.3 Organization of the Thesis	. 2
2	2.1 Analog to Digital Converter 2.1.1 Sampling 2.1.2 Quantization 2.2 ADC Characteristic and Performance Metrics 2.2.1 Static Specifications and Definitions 2.2.1.1 ADC Transfer Curves 2.2.1.2 Ideal Transfer Function 2.2.1.3 Offset Error 2.2.1.4 Gain Error 2.2.1.5 Differential Non-Linearity 2.2.1.6 Integral Non-Linearity 2.2.1.7 Missing Codes 2.2.2 Dynamic Specifications 2.2.2.1 ADC conversion Time and Maximum Sampling Rate 2.2.2.2 Signal to Noise Ratio	3 6 7 7 7 7 8 8 8 9 10 11 12 12 12 12
	2.2.2.3 Signal to Noise and Distortion Ratio	

	2.3	Linearity Analysis	13
	2.4	Traditional ADC Types	14
		2.4.1 Nyquist Rate ADCs	15
		2.4.1.1 Flash ADC	15
		2.4.1.2 Successive Approximation Register ADC	16
		2.4.1.3 Pipelined ADC	18
		2.4.2 Oversampling ADCs	19
		2.4.2.1 Sigma-Delta Modulator	19
	2.5	Time-Based ADC Types	20
		2.5.1 Nyquist Rate TB-ADC	20
		2.5.1.1 Single Slop ADC (Integrating ADC)	20
		2.5.1.2 Dual Slope TB-ADC	21
		2.5.2 Oversampling TB-ADC	22
		2.5.2.1 Pulse Width Modulation ADC	22
		2.5.2.2 Analog to Time Converter followed by Time to Digital Con-	
		verter	23
		2.5.2.3 Analog to Frequency Converter followed by Frequency to	
		Digital Converter	23
3		C Analysis and A New Design Methodology for VTC Circuits Suitable	
		TB-ADCT	25
		Introduction	25
	3.2	Traditional VTC	
		3.2.1 N-type VTC	
		3.2.1.1 Principle of operation	
		3.2.2 The Inherent Sample and Hold for the N-type VTC	
	3.3	Proposed Design Methodology	
		3.3.1 Circuit Description	
		3.3.2 Analytical Analysis	
		3.3.3 Simulation Results and Discussions	
		3.3.4 Methodology Conclusion	
	3.4	VTC for 8-bit TB-ADC	
		3.4.1 Differential VTC	45
4	Tim	ne to Digital Converter	47
•		Introduction	47
		TDC Types	47
		4.2.1 Counter Based TDC	47
		4.2.2 Flash TDC	48
		4.2.3 Delay Line Based TDC	50
		4.2.4 Hybrid Delay Line Based TDC	50
	4.3	Implementation of Two level Vernier Delay line based TDC	51
		4.3.1 Operation Theory	53
		4.3.2 Coarse Delay Line	54
		4.3.2.1 Coarse and Fine Cells at CVDL	57
		4.3.3 Interface Circuit	59
		4.3.4 Fine Delay Line	59

	4.3.4.1 Coarse and Fine Cells at FVDL	59
	4.3.5 D-FlipFlop	51
	4.3.6 Thermometer To Binary Conversion	53
	4.3.7 Final 8-bit Subtractor	53
5	Discussion and Conclusions	55
	5.1 Area Calculation and Distribution	57
	5.2 Power Calculation	58
	5.3 Conclusion	58
R	eferences	71
A	First Appendix 7	73
	A.1 Static ENOB calculation	73
	A.2 Static Error Calculation For VTC	
В	Second Appendix 8	33
	B.1 Dynamic Effective Number Of Bits (ENOB)	33
Δ 1	rahie Ahstraet	١