

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATION ENGINEERING

Design and Simulation of Multi-Junction Solar Cells

A Thesis

Submitted to the Electronics and Communications Department, Faculty of Engineering, Ain Shams University For Master Degree in Electrical Engineering

Submitted By

Omar Mahmoud Sabry Mohamed Saif

B. Sc. Electronics and Communications -2010

Supervised by

Prof. Dr. Mohamed Kamel Elsaid

Faculty of Engineering, Ain Shams Univ.

Assoc. Prof. Mohamed Abdelhamid Abouelatta

Faculty of Engineering, Ain Shams Univ.

Assoc. Prof. Ahmed Shaker Ahmed Zaki

Faculty of Engineering, Ain Shams Univ.

Cairo, Egypt, 2018

Approval Sheet

Thesis Title: Design and Simulation of Multi-Junction Solar Cells. By: Omar Mahmoud Sabry Mohamed Saif. Degree: Master of Science in Electronics and Communication Engineering. This thesis for Master Degree has been approved by: Prof. Dr. Abdelhalim Mahmoud Shousha **Signature** Electronics and Electrical Communication Dept. (.....) Cairo University. Prof. Dr. Abdelhalim Abdelnaby Zekry Electronics and Electrical Communication Dept. (.....) Ain-Shams University. Prof. Dr. Mohamed Kamel Elsaid Electronics and Electrical Communication Dept. (.....) Ain-Shams University.

Date of Examination: 23/6/2018

Statement

This thesis "Design and Simulation of Multi-Junction Solar Cells" is submitted to Faculty of Engineering, Ain Shams University for the degree of master in Electronics and Communication Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

DATE: 23 / 6 / 2018

Author: Omar Mahmoud Sabry Mohamed Saif

Signature:

ACKNOWLEDGEMENTS

This thesis could not be completed without the help and support from many people.

I would like to express my deepest gratitude to *Prof. Dr. Mohamed Kamel Elsaid*, Electronics and Communication Department, Faculty of Engineering, Ain Shams University, for his guidance, generous assistances, encouragement and supervision of this work.

Also, I would like to express my gratitude to my supervisors, *Assoc. Prof. Mohamed Abdelhamid Abouelatta* and *Assoc. Prof. Ahmed Shaker Zaki* for giving me the opportunity and privilege to work under their wings and for always going beyond of what is expected for M. Sc supervision. Their enthusiastic approach and positive attitude has kept me going even at times of crisis. Without their valuable advice, none of this work would have been achieved. Their efforts and encouragements will never be forgotten. But my only wish is that guiding me through this M. Sc has not been such a nightmare for them after all.

Lastly, but not least, I would like to thank my parents and my wife for their patience, unconditional love, encouragement and never-ending support.

Table of Contents

Approval Sheet	II
Statement	III
ACKNOWLEDGEMENTS	IV
Table of Contents	V
List of Figures	VIII
List of Tables	XII
List of Symbols	XIII
List of Abbreviations	XIV
Abstract	XV
Chapter 1	1
Introduction	1
1.1 Background	1
1.2 Thesis Objective	2
1.3 Organization of thesis	3
1.4 Fundamentals of a solar cell	3
1.4.1 I-V characteristics and basic parameters of solar cells	5
1.4.2 Losses in solar cell	7
1.4.3 Solar cell components	8
1.4.4 Solar Spectrum	10
1.5 Previous published works	11
Chapter 2	13
III-V Multi-Junction Solar Cells	13
2.1 Introduction	14
2.2- III-V MJSC concept and methodology	15
2.3 Window, BSF and Cell Interconnect layers	24
2.3.1 Window layers	24

2.3.2 Back Surface Field layer	25
2.3.3 Tunnel Junction Interconnects	25
Chapter 3	29
Design and Simulation of Solar Cell Device using Silvaco TCAD	29
3.1 Silvaco TCAD	29
3.2 Working with ATLAS	30
3.2.1 ATLAS Inputs and Outputs	30
3.2.2 ATLAS Input Deck Structure	30
3.3 Design of a solar cell device	43
3.3.1 Material selection and specification	43
3.3.2 Design and simulation of single-junction solar cell	46
3.3.3 Design of tunnel junction	49
3.3.4 Design and Simulation of DJ solar cell	53
3.3.5 Design and Simulation of TJ solar cell	55
Chapter 4	58
Simulation Results and Discussion	58
4.1 Silvaco ATLAS calibration	59
4.2 Simulation Results of single-junction solar cell	60
4.2.1 InGaP single-junction solar cell	60
4.2.2 GaAs single-junction solar cell	61
4.2.3 Ge and InGaAs single-junction solar cells	63
4.3 Simulation Results of DJ solar cell	64
4.3.1 Thickness optimization of top cell with window of $Al_{(x)}Ga_{(1-x)}$	
_{x)} As	64
4.3.2 Simulation of InGaP/GaAs Dual Junction Solar Cell with (Al _{0.7} Ga _{0.3}) _{0.5} In _{0.5} P as a top window	67
4.3.3 Optimization of the DJ Solar Cell	
4.3.4 Performance Comparison	
4.4 Simulation results of TI solar cells	7/

74
75
75
80
82
82
85
85
86
87
94

List of Figures

Figure 1.1: A schematic of a simple conventional solar cell. Creation	of
electron-hole pairs, e- and h+, respectively, is depicted [1]	.4
Figure 1.2: Dark (Blue) and Illuminated (Red) characteristics curves	of
the solar cell [12]	.5
Figure 1.3: Recombination mechanisms for a semiconductor [1]	7
Figure 1.4: Cross-section view for the single-junction solar cell used	in
this thesis	.9
Figure 2.1: Representation of photons distribution from the sol	aı
spectrum into different junctions of a monolithic tripl	e-
junction solar cell. The series interconnections between the	ıe
three junctions are accomplished using tunnel junctions [4	4
	6
Figure 2.2: The inverted metamorphic solar cell concept1	8
Figure 2.3: Energy gap vs. lattice constant for some common elementa	ry
and binary semiconductors [49]2	0
Figure 2.4: Static current-voltage characteristics of a typical tunnel diod	e
I_P and V_P are the peak current and peak voltage, respectivel	y
I_V and V_V are the valley current and valley voltag	e
respectively. The upper figures show the band diagrams of the	16
device at different bias voltages [58,59]2	7
Figure 3.1: ATLAS Inputs and Outputs	1
Figure 3.2: ATLAS Command Groups with the Primary Statements	in
each Group3	1
Figure 3.3: Generic Mesh of an InGaP single-junction solar cell used	in
thesis	35

Figure 3.4: Comparison of mesh grids when using (a) a factor of 4 and (b
a factor of 1
Figure 3.5: Regions created in the InGaP single-junction solar cell3
Figure 3.6: typical uniform distributions for InGaP single-junction sola
cell
Figure 3.7: ATLAS Result Analysis
Figure 3.8: n and k database for (a) Al _{0.49} Ga _{0.51} As, (b) GaAs, (c) Ge, (d
$In_{0.49}Ga_{0.51}P$ (e) $In_{0.53}Ga_{0.47}As$ and (f) $Al_{0.7}Ga_{0.3}As$ [64, 68]
69]4
Figure 3.9: Schematic for the complete InGaP single-junction solar cel
4
Figure 3.10: Schematic for the complete GaAs single-junction solar cel
49
Figure 3.11: Schematic for tunnel junction used in the thesis50
Figure 3.12: Energy Band Diagram for (a) first design and (b) secon
design of the tunnel junction of figure 3.105
Figure 3.13: Schematic diagram of the InGaP/GaAs DJ solar cell structur
used in this design5
Figure 3.14: Optimized InGaP/GaAs/InGaAs TJ solar cell structure use
in this design indicating the design parameters5
Figure 3.15: Frequency responses for InGaP, GaAs, and Ge sub-cells5
Figure 4.1: Generated InGaP single-junction solar cell structure wit
Mesh specification60
Figure 4.2: I-V and P-V characteristics for the InGaP single-junction sola
cell6
Figure 4.3: The frequency response of the InGaP single-junction solar ce
6

Figure 4.4: I-V and P-V characteristics of GaAs single-junction solar
cell
Figure 4.5: Frequency response of GaAs single-junction solar cell63
Figure 4.6: I-V characteristics for Ge and In _{0.53} Ga _{0.47} As cells64
Figure 4.7: (a) P-V and I-V Characteristics (b) EQE as a function of
wavelength for GaAs/GaAs tunnel diode under AM1.5
illumination, for InGaP/GaAs DJ solar cell with a top window
of $Al_{(x)}Ga_{(1-x)}As$, $x = 0.49$, at tempreture temp = 300K66
Figure 4.8: I-V characteristics of top cell, bottom cell and DJ cell solar
cell with $(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}P$ under 1 sun of AM1.5 solar
spectrum at temp = 300K69
Figure 4.9: Solar cell optimization techniques. (a) Variation of efficiency
w.r.t the bottom BSF thickness, (b) Variation of efficiency
w.r.t the top BSF concentration and (c) Variation of efficiency
w.r.t the bottom BSF concentration70
Figure 4.10: Energy band diagram of InGaP/GaAs DJ Solar Cell at bias of
(a) 0.0V and (b) 2.05V71
Figure 4.11: (a) P-V and I-V Characteristics (b) EQE as a function of
wavelength for GaAs/GaAs tunnel diode under AM1.5
illumination, for InGaP/GaAs DJ solar cell with a top
window of $(Al_{0.7}Ga_{0.3})_{0.5}In_{0.5}P$, at tempreture temp = 300K.
72
Figure 4.12: I-V characteristics for InGaP cell, GaAs cell, Ge cell and
InGaP/GaAs/Ge TJ cell74
Figure 4.13: I-V characteristics of InGaP/GaAs/Ge and
InGaP/GaAs/InGaAs TI solar cells 76

Figure	4.14:	P-V	and	I-V	chai	acter	istics	fo	r (a) o _]	ptim	ized
	In	GaP/G	aAs/G	e TJ	solar	cell	and	(b)	prop	osed	TJ	cell
	de	vice, u	nder 1	sun c	of AM	1.5 ill	lumin	atior	1			78
Figure 4	4.15: Er	nergy b	and d	iagraı	n of I	nGaP	/GaA	s/In(GaAs	TJ s	olar	cell
												79
Figure	4.16: E	nergy	band o	diagra	ım foi	(a)	top t	unne	l jun	ction	and	(b)
	bo	ttom t	unnel j	juncti	on of	the Ir	ıGaP	/GaA	s/InC	GaAs	TJ s	solar
	ce	11										80

List of Tables

List of Symbols

 I_o : Ideal Reverse saturation current

 I_{SC} : Short circuit current

k: Boltzmann constant

q: Electron charge

T: Temperature

n: Ideality factor

 V_{OC} : Open circuit voltage

 P_{max} : Maximum power point

 V_{max} : Voltage at maximum power

 I_{max} : Current at maximum power

FF: Fill Factor

 η : Conversion efficiency

 P_{inc} : Incident power

hv: Photon energy

conc: Doping concentration

NC300: Density of conduction states at 300K

NV300: Density of valence states at 300K

EG300: Energy gap at 300K

 ε : Permittivity "dielectric constant"

 χ_e : Electron affinity

List of Abbreviations

ARC: Antireflection Coating

ASTM: American Society for Testing and Measurement

BSF: Back Surface Field

CONMOB: Concentration-Dependent Low Field Mobility

CPE: Chemical Phase Epitaxy

DJ: Dual Junction

DOE: Design of Experiment.

 E_g : Energy bandgap

EHP: Electron-Hole Pairs

EQE: External Quantum Efficiency

IMM: Inverted Metamorphic

MBE: Molecular Beam Epitaxy

MJSC: Multi-Junction Solar Cell

MM: Metamorphic

MOCVD: Metal Organic Chemical Vapor Deposition

 $MUN(\mu_n)$: Electrons Mobility

 $MUP(\mu_p)$: Holes Mobility

NREL: National Renewable Energy Laboratory

OPTR: Optical recombination

PV: Photovoltaic

SRH: Shockely-Read-Hall recombination

TJ: Triple Junction

TW: Tera-Watt

Abstract

The window and back surface field (BSF) layers are two important layers in the design of multi-junction solar cells. In this study, the focus is on selecting suitable materials for the top window layer as well as the top and bottom BSF layers of an InGaP/GaAs Dual-Junction (DJ) solar cell with introducing the effect of thickness variation of these layers. Furthermore, the doping concentration of the top and bottom BSF layers is optimized.

Another interest in this study is to present an optimization procedure for the design parameters of InGaP/GaAs/ InGaAs Triple-Junction (TJ) solar cell. The optimization technique is performed on InGaP/GaAs/Ge. The Ge sub-cell is then replaced by an InGaAs sub-cell and a comparison between the performance parameters of InGaP/GaAs/Ge and InGaP/GaAs/InGaAs TJ solar cells is investigated.

The simulations of DJ and TJ solar cells are carried out using advanced Silvaco TCAD tools. For each design, the solar cell performance parameters like open-circuit-voltage (V_{OC}) , short-circuit-current density (J_{SC}) , Fill Factor (FF) and the conversion efficiency (η) are extracted and compared with previously published results to ascertain the results of the present work.