

A VISSIM SIMULATION APPROACH TO ENHANCE LEVEL OF SERVICE OF CLOVERLEAF INTERCHANGES AT GREATER CAIRO

By

Ahmed Nabil Hafez Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING - PUBLIC WORKS

A VISSIM SIMULATION APPROACH TO ENHANCE LEVEL OF SERVICE OF CLOVERLEAF INTERCHANGES AT GREATER CAIRO

By **Ahmed Nabil Hafez Mohamed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Civil Engineering - Public Works

Under the Supervision of

Prof. Dr. Ahmed El Badawy Taha Abdelmegeed	Prof. Dr. Azza Mostafa Saied
Professor of Transportation	Professor of Transportation
Department of Public Works	Department of Public Works
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University
Associate Prof. Ah Hassa	·

Associate Professor of Transportation Department of Public Works Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

A VISSIM SIMULATION APPROACH TO ENHANCE LEVEL OF SERVICE OF CLOVERLEAF INTERCHANGES AT GREATER CAIRO

By **Ahmed Nabil Hafez Mohamed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Civil Engineering - Public Works

Approved by the
Examining Committee

Prof. Dr. Ahmed El-Badawy Taha Abdelmegeed, Thesis Main Advisor
Cairo University Faculty of Engineering

Associate Prof. Ahmed El-Sayed Hassan,
Cairo University Faculty of Engineering

Prof. Dr. Ehab Ahmed Fahmy Al khodary,
Cairo University Faculty of Computers and Information

Prof. Dr. Mostafa Amin Abo-Hashema,
Fayoum University Faculty of Engineering

External Examiner
Fayoum University Faculty of Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Ahmed Nabil Hafez

Date of Birth: 2/8/1990 **Nationality:** Egyptian

E-mail: anhafz@gmail.com
Phone: 01007385160

Address: 6 October – 7th District – villa 9

Registration Date: 1/10/2012 **Awarding Date:** 2018

Degree: Master of Science

Department: Public Works – Civil Engineering

Supervisors:

Prof. Ahmed El Badawy Taha Prof. Azza Mostafa Saied

Assoc.Prof. Ahmed El Sayed Hassan

Examiners:

Prof. Ahmed El Badawy Taha (Thesis Main Advisor)

Assoc.Prof. Ahmed El Sayed Hassan (Advisor)

Porf. Ehab Ahmed Fahmy (External Examiner)
Cairo University Faculty of Computers and Information
Porf. Mostafa Amin Abo-Hashema (External Examiner)

Fayoum University Faculty of Engineering

Title of Thesis:

A VISSIM SIMULATION APPROACH TO ENHANCE LEVEL OF SERVICE OF CLOVERLEAF INTERCHANGES AT GREATER CAIRO

Key Words:

Weaving; Ramp Metering; Cloverleaf Interchange; ALINEA

Summary:

This study examines the effect of application of different "Ramp Metering" techniques on selected cloverleaf interchanges in Greater Cairo-Ring Road. Several site investigations and surveys were conducted to determine the geometric characteristics of cloverleaf interchanges of Greater Cairo-Ring Road then these interchanges were grouped based on their characteristics and one interchange was randomly selected from each group. Further site surveys were conducted to collect data about the traffic volumes of the selected interchanges. Using these data, a microsimulation model was developed using VISSIM software to assess the current conditions of traffic operation and the effect of applying different "Ramp Metering" techniques. The results were presented in terms of measures of performance such as level of service, time of delay and average vehicles speeds. Two "Ramp Metering" techniques were applied (fixed rate "Ramp Metering" and ALINEA algorithm "Ramp

Metering"). Each technique was applied with different scenarios and parameters.

Acknowledgments

I would like to express my deep thankfulness to Prof. Azza Mostafa Saied and Prof. Ahmed El Badawy Taha for their supervision, guidance, support, and precious comments. My stable trust in their knowledge and experience was my best reason to feel secure and motivated to do my best and learn more.

In addition, I was blessed to work under the supervision of Dr. Ahmed El Sayed. His honest support and priceless comments are very important reasons for the accomplishment of this research work. Moreover, I believe that I have learnt a lot from him on the personal level as well as the scientific one.

Special gratefulness to Prof. Ali Soliman Huzayyein. No written words could ever express my feelings towards her unlimited support and unique kindness. In my eyes, he is the perfect symbol of what every professor should be on the scientific and personal level

I owe a lot of thanks to my parents, my wife and my brothers who provided me with strong support to accomplish that work.

Table of Contents

ACKN(OWLEDGM	IENTS	I
TABLE	OF CONT	ENTS	II
LIST O	F TABLES		. VI
LIST O	F FIGURE	S	VII
ABSTR	ACT		X
СНАРТ	ER 1: INT	RODUCTION	1
1.1.	BACKGROU	ND	1
1.2.		TATEMENT	
1.3.		Objectives	
1.4.		FLINE	
СНАРТ	TER 2: LITI	ERATURE REVIEW	5
2.1.		TION	
2.2.		TRANSPORTATION SYSTEMS	
2.2.		Wireless Communications	
2.2.		Computational Technologies	
2.2.		Floating Car Data	
2.2.		Sensing Technologies	
2.2.		Inductive loop detection	
2.2.		Video vehicle detection	
2.2.		Bluetooth detection	
2.2.		Emergency vehicle notification systems	
2.2.		Variable Speed Limits	
2.2.		Ramp Metering	
		11	
2.3.	1.	Previous Research	12
2.3.	2.	Factors Affecting Weaving	13
2.4.	RAMP MET	ERING	
2.4.		Ramp Meter Components	
2.4.	2.	Local Ramp Metering Algorithms	
2.4.	3.	Area Wide Ramp Metering Algorithms	
2.4.	4.	Previous Research	
2.4.	5.	Requirements for a Successful Implementation of Ramp Metering	20
2.5.	VISSIM So	DFTWARE	21
2.5.		History and Applications of VISSIM	
2.5.	2.	Model Building Principles	
2.6.	SUMMARY	-	
СНАРТ	TER 3: RES	EARCH METHODOLOGY	23
3.1.	Introduct	TION	23

3.2.	SELECTION OF THE STUDY AREA	24
3.3.	COLLECTION OF FIELD DATA	24
3.4.	DEVELOPMENT OF THE MICRO-SIMULATION MODEL	24
3.5.	ASSESSMENT OF CURRENT TRAFFIC CONDITIONS	25
3.6.	APPLYING RAMP METERING TECHNIQUES	26
3.7.	RESULTS ANALYSIS	27
CHAP	TER 4: COLLECTION OF TRAFFIC AND GEOMETRIC DATA	28
4.1.	Introduction	28
4.2.	SITE SELECTION AND DESCRIPTION	28
4.3.	GEOMETRIC CHARACTERISTICS	34
4.4.	Traffic Data	37
CHAP	TER 5: SIMULATION TOOL AND ITS MAIN PARAMETERS	41
5.1.	Introduction	41
5.2.	VISSIM OVERVIEW	41
5.3.	VISSIM INPUT DATA	42
5.3	Network Geometry	42
5.3	3.2. Links and Connectors	42
	Vehicle Types and Traffic Compositions	
	S.4. Speed Distributions	
	3.5. Vehicle Inputs and Routes	
	VISSIM OUTPUTS	
	Link Evaluation	
	TER 6: INTERCHANGE MEASURES OF PERFORMANCE	40
	RERIMENT DESIGN	48
6.1.		
6.2.	Experiment Design	
	Measures of Performance	
CHAP	TER 7: ASSESSMENT OF INTERCHANGES TRAFFIC OPERATI	ION :
CURR	ENT CONDITIONS	51
7.1.	Introduction	51
7.2.	FULL CLOVERLEAF WITH SHORT WEAVING LENGTH	51
7.3.	FULL CLOVERLEAF WITH LONG WEAVING LENGTH	54
7.4.	PARTIAL CLOVERLEAF WITH SHORT WEAVING LENGTH	57
7.5.	PARTIAL CLOVERLEAF WITH LONG WEAVING LENGTH	59
	TER 8: ASSESSMENT OF INTERCHANGES TRAFFIC OPERATI	
FIXED	RATE RAMP METERING	61
8.1.	Introduction	61
8.2.	FULL CLOVERLEAF WITH SHORT WEAVING LENGTH	61
8.2	Applying Metering Rate of 300 vph / lane	
8.2	Applying Metering Rate of 450 vph / lane	63

8.2.3.	Applying Metering Rate of 600 vph / lane	64
8.3. FULL (CLOVERLEAF WITH LONG WEAVING LENGTH	65
8.3.1.	Applying Metering Rate of 300 vph / lane	65
8.3.2.	Applying Metering Rate of 450 vph / lane	67
8.3.3.	Applying Metering Rate of 600 vph / lane	68
8.4. PARTIA	AL CLOVERLEAF WITH SHORT WEAVING LENGTH	69
8.4.1.	Applying Metering Rate of 300 vph / lane	69
8.4.2.	Applying Metering Rate of 450 vph / lane	71
8.4.3.	Applying Metering Rate of 600 vph / lane	72
8.5. PARTIA	AL CLOVERLEAF WITH LONG WEAVING LENGTH	73
8.5.1.	Applying Metering Rate of 300 vph / lane	73
8.5.2.	Applying Metering Rate of 450 vph / lane	75
8.5.3.	Applying Metering Rate of 600 vph / lane	76
CHAPTER 9.	ASSESSMENT OF INTERCHANGES TRAFFIC OPER	ATION ·
	IP METERING	
	DUCTION	
	CLOVERLEAF WITH SHORT WEAVING LENGTH	
9.2.1.	Applying Optimum Occupancy of 8%	
9.2.2.	Applying Optimum Occupancy of 14%	
9.2.3.	Applying Optimum Occupancy of 27%	
	CLOVERLEAF WITH LONG WEAVING LENGTH	
9.3.1.	Applying Optimum Occupancy of 8%	
9.3.2.	Applying Optimum Occupancy of 14%	
9.3.3.	Applying Optimum Occupancy of 27%	
	AL CLOVERLEAF WITH SHORT WEAVING LENGTH	
9.4.1.	Applying Optimum Occupancy of 8%	
9.4.2.	Applying Optimum Occupancy of 14%	
9.4.3.	Applying Optimum Occupancy of 27%	
	AL CLOVERLEAF WITH LONG WEAVING LENGTH	
9.5.1.	Applying Optimum Occupancy of 8%	
9.5.2.	Applying Optimum Occupancy of 14%	
9.5.3.	Applying Optimum Occupancy of 27%	
	COMPARISON OF DIFFERENT SCENARIOS OF RA	
	APPLICATION	
	DUCTION	
	ARISON METHODOLOGY	
	ARISON BETWEEN APPLYING FIXED RATE RAMP METERING AN	
CURRENT CO	NDITIONS	94
10.4. COMPA	ARISON BETWEEN APPLYING ALINEA RAMP METERING AND (CURRENT
CONDITION		96
10.5. COMPA	ARISON BETWEEN APPLYING FIXED RATE AND ALINEA RAMP	
METERING		98
	ARISON BETWEEN APPLYING FIXED RATE AND ALINEA RAMP	
EOR FUTURE I	DEMAND	100

CHAPT	ER 11: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS.102	2
11.1.	SUMMARY 102	
11.2.	CONCLUSIONS 103	3
11.3.	RECOMMENDATIONS FOR FURTHER WORK	3
REFER	ENCES104	4

List of Tables

Table 4.1: Grouping based on the configuration	.31
Table 4.2: Weaving Lengths of the cloverleaf interchanges	.32
Table 4.3: Final Grouping of the Interchanges	
Table 6.1: Scenario Matrix for different simulation runs	
Table 6.2: HCM 2010 Assessment of LOS Based on Density	.50
Table 7.1: Densities and LOS of the 1 st interchange	
Table 7.2: Densities and LOS of the 2 nd interchange	
Table 8.1: WS14 densities and los values for each metering rate	.62
Table 8.2: WS21 densities and los values for each metering rate	.65
Table 8.3: WS14 densities and los values for each metering rate	.69
Table 8.4: WS14 densities and los values for each metering rate	.73
Table 9.1: WS21 densities and los values for each optimum occupancy	.78
Table 9.2: WS14 densities and los values for each optimum occupancy	.81
Table 9.3: WS14 densities and los values for each optimum occupancy	.85
Table 9.4: WS41 densities and los values for each optimum occupancy	.89
Table 10.1: t test parameters for fixed and current comparison	.95
Table 10.2: t test parameters for ALINEA and current comparison	.96
Table 10.3: t test parameters for fixed and ALINEA comparison	
Table 10.4: t test parameters for fixed and ALINEA comparison for future demand1	00

List of Figures

Figure 1.1: Weaving at Cloverleaf Interchanges	2
Figure 1.2: Example of a ramp meter	
Figure 2.1: ITS graphical user interface for a highway network	
Figure 2.3: Example of a floating car mechanism	
Figure 2.4: Example of inductive loop	
Figure 2.5: Formation of a weaving segment	
Figure 2.6: Type A weaving configuration	
Figure 2.7: Type B weaving configuration	
Figure 2.8: Type C weaving configuration	
Figure 2.9: Measuring the length of a weaving segment	
Figure 2.10: Typical schematic diagram of ramp metering [18]	
Figure 3.1: Flow chart describing the methodology	
Figure 3.2: an example of model at VISSIM software	
Figure 3.3: level of Service determination using HCM 2010	
Figure 4.1: An example of weaving at a cloverleaf interchange	
Figure 4.2: Locations of Cloverleaf Interchanges at Greater Cairo	
Figure 4.3: an example of full cloverleaf interchange	
Figure 4.4: an example of partial cloverleaf interchange	
Figure 4.4: The measurement of weaving length	
Figure 4.5: measuring weaving length using Google Earth	
Figure 4.6: Satellite photo for Ring Road and 26 July Corridor	
Figure 4.7: Satellite photo for Ring Road and Suez Road	35
Figure 4.8: Satellite photo for Ring Road and Alex. Agr. Road	
Figure 4.9: Satellite photo for Ring Road and Kornesh El Maadi	
Figure 4.10: Traffic Counts Form	
Figure 4.11: Data Collection Points of Ring Road vs 26 July Corridor	
Figure 4.12: Data Collection Points of Ring Road vs Suez Road	
Figure 4.13: Data Collection Points of Ring Road vs 26 Alex Agr. Road	
Figure 4.14: Data Collection Points of Ring Road vs Kornesh El Maadi	
Figure 5.1: Editing link characteristics in VISSIM	
Figure 5.2: Study network on Google Earth background	
Figure 5.3: Defining Vehicle Type in VISSIM	
Figure 5.4: Example of Speed Distribution in VISSIM	
Figure 5.5: Defining Reduced Speed Area in VISSIM	
Figure 5.6: Example of Link Evaluation Result	
Figure 5.7: Example of Node Evaluation Polygon	
Figure 5.8: Example of Node Evaluation Result	
Figure 7.1: Denotation of sections of the first interchange	
Figure 7.2: Density results of the first interchange	
Figure 7.3: Delay results of the first interchange	
Figure 7.4: Speed results of the first interchange	
Figure 7.6: Density results of the second interchange	
Figure 7.7: Delay results of the second interchange	
Figure 7.8: Speed results of the second interchange	
Figure 7.9: Denotation of sections of the third interchange	

Figure 7.10: Density results of the third interchange	58
Figure 7.11: Delay results of the third interchange	58
Figure 7.12: Speed results of the third interchange	58
Figure 7.13: Denotation of sections of the fourth interchange	59
Figure 7.14: Density results of the fourth interchange	60
Figure 7.15: Delay results of the fourth interchange	60
Figure 7.16: Speed results of the fourth interchange	60
Figure 8.1: Densities of 1 st interchange at 300 vph metering rate	62
Figure 8.2: Delay of 1st interchange at 300 vph metering rate	62
Figure 8.3: Speeds of 1st interchange at 300 vph metering rate	62
Figure 8.4: Densities of 1st interchange at 450 vph metering rate	
Figure 8.5: Delay of 1st interchange at 450 vph metering rate	63
Figure 8.6: Speeds of 1st interchange at 450 vph metering rate	63
Figure 8.7: Densities of 1 st interchange at 600 vph metering rate	
Figure 8.8: Delay of 1st interchange at 600 vph metering rate	
Figure 8.9: Speeds of 1st interchange at 600 vph metering rate	64
Figure 8.10: Densities of 2 nd interchange at 300 vph metering rate	
Figure 8.11: Delay of 2 nd interchange at 300 vph metering rate	
Figure 8.12: Speeds of 2 nd interchange at 300 vph metering rate	
Figure 8.13: Densities of 2 nd interchange at 450 vph metering rate	
Figure 8.14: Delay of 2 nd interchange at 450 vph metering rate	
Figure 8.15: Speeds of 2 nd interchange at 450 vph metering rate	
Figure 8.17: Delay of 2 nd interchange at 600 vph metering rate	
Figure 8.18: Speeds of 2 nd interchange at 600 vph metering rate	
Figure 8.19: Densities of 3 rd interchange at 300 vph metering rate	
Figure 8.20: Delay of 3 rd interchange at 300 vph metering rate	
Figure 8.21: Speeds of 3 rd interchange at 300 vph metering rate	
Figure 8.22: Densities of 3 rd interchange at 450 vph metering rate	
Figure 8.23: Delay of 3 rd interchange at 450 vph metering rate	
Figure 8.24: Speeds of 3 rd interchange at 450 vph metering rate	
Figure 8.25: Densities of 3 rd interchange at 600 vph metering rate	
Figure 8.26: Delay of 3 rd interchange at 600 vph metering rate	
Figure 8.27: Speeds of 3 rd interchange at 600 vph metering rate	
Figure 8.28: Densities of 4 th interchange at 300 vph metering rate	
Figure 8.29: Delay of 4 th interchange at 300 vph metering rate	74
Figure 8.30: Speeds of 4 th interchange at 300 vph metering rate	74
Figure 8.31: Densities of 4 th interchange at 450 vph metering rate	75
Figure 8.32: Delay of 4 th interchange at 450 vph metering rate	
Figure 8.33: Speeds of 4 th interchange at 450 vph metering rate	
Figure 8.34: Densities of 4 th interchange at 600 vph metering rate	76
Figure 8.35: Delay of 4 th interchange at 600 vph metering rate	76
Figure 8.36: Speeds of 4 th interchange at 600 vph metering rate	76
Figure 9.1: Densities of 1 st interchange at .08 optimum occupancy	
Figure 9.2: Delay of 1 st interchange at .08 optimum occupancy	
Figure 9.3: Speeds of 1 st interchange at .08 optimum occupancy	
Figure 9.4: Densities of 1 st interchange at .14 optimum occupancy	
Figure 9.5: Delay of 1 st interchange at .14 optimum occupancy	
Figure 9.6: Speeds of 1 st interchange at .14 optimum occupancy	
Figure 9.7: Densities of 1 st interchange at .27 optimum occupancy	
Figure 9.8: Delay of 1 st interchange at .27 optimum occupancy	
و د د د د د د د د د د د د د د د د د د د	

Figure 9.9: Speeds of 1 st interchange at .27 optimum occupancy	80
Figure 9.10: Densities of 2 nd interchange at .08 optimum occupancy	
Figure 9.11: Delay of 2 nd interchange at .08 optimum occupancy	82
Figure 9.12: Speeds of 2 nd interchange at .08 optimum occupancy	
Figure 9.13: Densities of 2 nd interchange at .14 optimum occupancy	83
Figure 9.14: Delay of 2 nd interchange at .14 optimum occupancy	83
Figure 9.15: Speeds of 2 nd interchange at .14 optimum occupancy	
Figure 9.16: Densities of 2 nd interchange at .27 optimum occupancy	84
Figure 9.17: Delay of 2 nd interchange at .27 optimum occupancy	84
Figure 9.18: Speeds of 2 nd interchange at .27 optimum occupancy	84
Figure 9.19: Densities of 3rd interchange at .08 optimum occupancy	86
Figure 9.20: Delay of 3 rd interchange at .08 optimum occupancy	86
Figure 9.21: Speeds of 3 rd interchange at .08 optimum occupancy	86
Figure 9.22: Densities of 3 rd interchange at .14 optimum occupancy	87
Figure 9.23: Delay of 3 rd interchange at .14 optimum occupancy	87
Figure 9.24: Speeds of 3 rd interchange at .14 optimum occupancy	87
Figure 9.25: Densities of 3 rd interchange at .27 optimum occupancy	88
Figure 9.26: Delay of 3 rd interchange at .27 optimum occupancy	88
Figure 9.27: Speeds of 3 rd interchange at .27 optimum occupancy	88
Figure 9.28: Densities of 4 th interchange at .08 optimum occupancy	90
Figure 9.29: Delay of 4 th interchange at .08 optimum occupancy	90
Figure 9.30: Speeds of 4 th interchange at .08 optimum occupancy	90
Figure 9.31: Densities of 4 th interchange at .14 optimum occupancy	91
Figure 9.32: Delay of 4 th interchange at .14 optimum occupancy	
Figure 9.33: Speeds of 4 th interchange at .14 optimum occupancy	91
Figure 9.34: Densities of 4 th interchange at .27 optimum occupancy	92
Figure 9.35: Delay of 4 th interchange at .27 optimum occupancy	
Figure 9.36: Speeds of 4 th interchange at .27 optimum occupancy	92
Figure 10.1: accept and reject criteria at t test	94

Abstract

Urban freeway demand that frequently exceeds capacity has caused Transportation agencies to consider many options to reduce congestion. A series of solutions that falls under the Active Traffic Management (ATM) banner have shown promising potential. Perhaps the most popular ATM strategy is "Ramp Metering". This strategy involves limiting the access of vehicles to freeways at an entrance ramp. Accordingly, freeway throughput, speeds, and travel time reliability may be increased. In addition, the number of traffic incidents may be decreased.

This study examines the effect of application of different "Ramp Metering" techniques on selected cloverleaf interchanges in Greater Cairo-Ring Road. Several site investigations and surveys were conducted to determine the geometric characteristics of cloverleaf interchanges of Greater Cairo-Ring Road then these interchanges were grouped based on their characteristics and one interchange was randomly selected from each group. Further site surveys were conducted to collect data about the traffic volumes of the selected interchanges. Using these data, a microsimulation model was developed using VISSIM software to assess the current conditions of traffic operation and the effect of applying different "Ramp Metering" techniques. The results were presented in terms of measures of performance such as level of service, time of delay and average vehicles speeds. Two "Ramp Metering" techniques were applied (fixed rate "Ramp Metering" and ALINEA algorithm "Ramp Metering"). Each technique was applied with different scenarios and parameters.

The results of this study showed that applying ramp metering at the entrance of loops of cloverleaf interchanges could reduce the interchange average delay, increase average vehicles speeds and reduce the confliction between the vehicles of the on-ramp and the vehicles of the main stream. It is worth mentions that application of ALINEA "Ramp Metering" shows more efficient performance measures than that for Fixed Rate.

Chapter 1: Introduction

1.1. Background

In the recent decades, demand for travel is continuously increasing worldwide with different growth rates based on several factors as economy growth, car ownership etc. Also, the demand growth rate is higher within metropolitan areas, particularly urban areas, where most of the economic activities are located. The growth rate of the demand result in a significant effect on the road networks which their capacities growth cannot meet the increasing demand. Consequently, motorways, which are usually expected to provide a level of service and a mobility higher than those of other road types in urban streets, are experiencing extensive daily traffic congestion and often reaches stop-and-go state during peak periods. In addition, adding capacity of road infrastructure is not always an available option due to various social, spatial, financial and environmental constraints.

For this respect, alternative techniques are used to mitigate the effect of the growing demand on the performance of the road networks (i.e. Intelligent Transportation Systems (ITS)). ITS technologies aim at optimal utilization of available infrastructure by incorporating distributed control and coordination system to provide a safer, efficient and reliable transportation system. In Cairo, many corridors with high speed limit and capacity carry large traffic volumes such as Ring Road, Autostrad, Regional Ring Road, 26th corridor, etc. The Ring Road is the most important corridor in Cairo because of it has a total length of 110 km, carries around 140,000 vehicles per day and has a higher rate of accidents compared to similar size roads. This research aims to investigate the effect of operating ITS for improving the motorways LOS by regulating the traffic at the interchange.

Intelligent transport systems vary in technologies applied from basic management systems such as car navigation, traffic signal control systems, container management systems, variable message signs, automatic number plate recognition or speed cameras to monitor applications such as security CCTV systems and to more advanced applications that integrate live data and feedback from a number of other sources such as parking guidance and information systems.

Ramp metering (RM) is an important Intelligent Transportation System tool which aims at improving performance of motorway systems. RM is widely used all around the world to regulate on-ramp traffic and is commonly regarded as one of the most direct and efficient countermeasures to mitigate traffic congestion on motorways (Papageorgiou, 2003). RM improves performance of motorways by regulating on-ramp flow to keep mainline flow under its capacity.

1.2. Problem Statement

A major congestion problem could be identified from the above context where high interflow between the intersecting highways at the cloverleaf interchange. Thus, the weaving segment at the interchange LOS reduces resulting in high traffic density, lower speed and increasing travel time. This research aims at mitigating the congestion effects on weaving sections at cloverleaf interchanges in Cairo region using the ramp metering