

A SELF-POWERED NEURAL RECORDING AND STIMULATION SOC FOR INTRACTABLE EPILEPSY TREATMENT

By

Ali ElHussien Ali Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

A SELF-POWERED NEURAL RECORDING AND STIMULATION SOC FOR INTRACTABLE EPILEPSY TREATMENT

By

Ali ElHussien Ali Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed M. Soliman Dr. Hassan Mostafa Hassan

Professor Assistant Professor

Department Department

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

A SELF-POWERED NEURAL RECORDING AND STIMULATION SOC FOR INTRACTABLE EPILEPSY TREATMENT

By

Ali ElHussien Ali Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:
Prof. Ahmed M. Soliman, Thesis Main Advisor
Prof. Mohamed F. Abu-ElYazeed, Internal Examiner
Prof. Ahmed H. Madian, External Examiner (National Center for Radiation Research and Technology)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Ali ElHussien Ali Hassan

Date of Birth: 26/04/1992 **Nationality:** Egyptian

E-mail: ali.h.hassan@ieee.org **Phone:** +201220487437

Address: Electronics and Communications

Engineering Department,

Cairo University, Giza 12613, Egypt

Registration Date: 01/10/2015 **Awarding Date:** / /yyyy **Degree:** Master of Science

D 4 4 FI 4 ' 1 C '

Department: Electronics and Communications Engineering

Supervisors:

Prof. Ahmed M. Soliman Dr. Hassan Mostafa Hassan

Examiners:

Prof. Ahmed M. Soliman (Thesis main advisor)
Prof. Mohamed F. Abu-ElYazeed (Internal examiner)

Prof. Ahmed H. Madian, National Center for Radiation Research and Technology

(External examiner)

Title of Thesis:

A Self-Powered Neural Recording and Stimulation SoC for Intractable Epilepsy Treatment

Key Words:

Neural Implants; Neural Recording; Neural Stimulation; Wireless Powering; Biomedical circuits

Summary:

In this thesis, a self-powered neural recording and stimulation system-on-chip for intractable Epilepsy treatment. A prototype of the proposed SoC is implemented using 130 nm CMOS technology.

Acknowledgments

Foremost, I take this opportunity to express my deep gratitude and appreciation to my advisors Prof. Ahmed M. Soliman and Dr. Hassan Mostafa for their continuous help, support, guidance, enthusiasm, patience, and encouragement. I could not have imagine having better advisors. I learned a lot from their vision and dedication.

I would like to thank my friends who supported me, Sameh Attia and Khaled Helal, through this venture and tried to help me to the best of their abilities.

Last but not least, the greatest debt and gratitude is for God who provided me with the capabilities to complete this project and achieve my goal.

Dedication

I dedicate this dissertation to my family for the unceasing encouragement, support and attention. I want to thank them for the continuous supply of love and care. I own them every single achievement in my life.

Table of Contents

A	cknov	agments	1
De	edicat	n	ii
Тa	able o	Contents	iii
Li	st of '	bles	vi
Li	st of l	gures	vii
Li	st of	breviations	X
Li	st of l	blications	xii
Al	bstrac		xiii
1	Intr	luction	1
	1.1	Background	1
	1.2	Motivation	1
	1.3	Proposed Work	2
	1.4	Thesis Outline	
2	Lite	ture Review	4
	2.1	Open-Loop Neurostimulators	4
	2.2	Closed-Loop Neurostimulators	5
3	Low	loise Neural Amplifier	8
	3.1	ntroduction	
	3.2	Various LNA Architectures	9
		Basic LNA Architecure	9
		5.2.2 Single-Ended Capacitive Feedback LNA	
		5.2.3 Fully Differential Capacitive Feedback LNA	
		5.2.4 LNA With Active Low-Frequency Suppression	
		5.2.5 Fully Differential Self-Biased LNA	
	3.3	NA Design Optimization	16
		3.3.1 Current-Reuse OTA	16
		Bulk-Driven OTA	17
	3 4	Simulation Results	18

4	Ana	log-to-Digital Converter	25
	4.1	Introduction	25
	4.2	Comparator-Based Low-Power ADC	25
		4.2.1 Successive Approximation Register (SAR-ADC)	25
		4.2.2 ByPass-SAR ADC	27
		4.2.3 MSAR ADC	28
		4.2.4 Dual-Slope ADC	29
		4.2.5 Time-Based SAR ADC	31
	4.3	A Pseudo-Differential Architecture for Low-Power Time-Based ADC	33
		4.3.1 Main VTC Core	34
		4.3.2 Proposed LP-VTC Architecture	37
	4.4	Circuit Layout and Simulation Results	38
		4.4.1 Comparator-Based Low-Power ADC	38
		4.4.2 A Pseudo-Differential Architecture for LP-TADC	43
5	Neu	ral Stimulators	50
	5.1	Introduction	50
	5.2	Current Stimulator Topologies	51
	5.3	Adaptable High-Voltage Current Stimulator	53
	5.4	A Low-Power Multi-Waveform Current Stimulator	55
	5.5	Circuit Layout and Simulation Results	57
6	Indu	active Link Power Supply	63
	6.1	Introduction	63
	6.2	Active Voltage Doubler	65
	6.3	Bandgap Reference Circuit	68
	6.4	Low-Dropout Regulator	
	6.5	Circuit Layout and Simulation Results	
7	Elec	trode Impedance Characterization	81
8	Con	clusions and Future Work	84
	8.1	Conclusions	84
	8.2	Future Work	85
Re	feren	ces	86
A	First	t Appendix	94
	A.1		94
	A.2	Static Error Calculation For VTC	101
В	Seco	ond Appendix	104
	B.1	Dynamic Effective Number Of Bits (ENOB)	104

Arabic Abstract

List of Tables

3.1	Performance summary between this work and different LNA architectures	20
3.2	Tunable High-Pass Cutoff Frequency (f_{HP}) versus LNA biaising voltage	
	(V_B)	20
3.3	Tunable Low-Pass Cutoff Frequency (f_{LP}) versus Load Capacitance (C_L)	21
4.1	Performance summary between this work and the optimized comparator	
	architectures	43
4.2	Performance summary of this work versus other VTC architectures	48
4.3	Performance summary of this work versus other ADC architectures	48
5.1	Performance summary between this work and different neural stimulators	61
6.1	Active voltage doubler control signals	67
6.2	Active voltage doubler performance summary versus the state-of-the-art	
	power converters	78
6.3	BGR circuit performance summary versus the state-of-the art BGR circuits	78
6.4	LDO circuit performance summary versus the state-of-the art LDO circuits	79

List of Figures

1.1	SoC	2
2.1	Commercially-available open-loop neurostimulators: (a) Medtronic Activa RC [4], (b) St. Jude Brio [5], and (c) Boston Scientific Vercise PC	,
2.2	[6]	5
3.1	Bio-Potential Signals	8
3.2	Basic LNA Architecture	ç
3.3	Single Ended LNA Circuit Schematic	1(
3.4	Single Ended LNA - OTA Circuit Schematic	11
3.5	Fully Differential Capacitive Feedback LNA Circuit schematic	12
3.6	Telescopic OTA Circuit Schematic	12
3.7	LNA with an active feedback network Circuit Schematic	13
3.8	Main OTA Circuit Schematic	13
3.9	Feedback OTA Circuit Schematic	14
3.10	Fully Differential Self-Biased LNA Circuit Schematic	15
3.11	Self Biased OTA Circuit Schematic	16
3.12	Fully Differential Current-Reuse OTA Circuit Schematic	17
3.13	Bulk-Driven OTA Circuit Circuit Schematic	18
3.14	Single-Ended Capacitive Feedback LNA	22
3.15	Fully Differential Capacitive Feedback LNA	22
3.16	LNA With Active Low-Frequency Suppression	23
3.17	Optimized Fully Differential Capacitive Feedback LNA	23
3.18	Optimized LNA With Active Low-Frequency Suppression	24
3.19	Fully Differential Self-Biased LNA	24
4.1	SAR-ADC Block Diagram	26
4.2	Pre-Amplifier-Based Latched Comparator Circuit Schematic	27
4.3	Pre-Amplifier-Based Comparator with An Embedded Regenerative Latch	
	Circuit Schematic	28
4.4	Pre-Amplifier-Based Static Comparator Circuit Schematic	29
4.5	Dual-Slope ADC Block Diagram	29
4.6	High-Gain Pre-Amplifier-Based Dynamic Comparator Circuit Schematic.	30

4.7	Proposed Time-Based Comparator Block Diagram	31
4.8	TB-Comparator Implementation	33
4.9	Main VTC Core Block diagram	35
4.10	Proposed Circuit schematic of (a) T_{rise} and (b) T_{fall}	35
4.11		36
4.12	Proposed T-ADC architecture block diagram	37
4.13	Circuit layout for five different architectures	38
4.14	Overdrive Test	39
4.15	Monte-Carlo Simulation of the Offset Voltage Variation	41
4.16	Linearity Test	42
4.17	LP-VTC Circuit Layout in 0.13 μm CMOS technology	44
4.18	Simulated waveforms of the proposed LP-VTC architecture	44
4.19	Output delay for the proposed LP-VTC architecture Vs input voltage	45
4.20	Simulated static nonlinearities of 7-bit T-ADC	46
4.21	Output Spectrum due to input frequency = 51.75 KHz without sample	
	and hold circuit	46
4.22	PVT variations for the single core LP-VTC	47
5.1	Output driver implemented by current-mode DAC with current mirror [2]	51
5.2	Output driver implemented by current-mode DAC with fully cascode cur-	
	rent mirror[2]	51
5.3	Output driver implemented by DAC with voltage-controlled resistor [2] .	52
5.4	Proposed Adaptable High-Voltage Current Stimulator	53
5.5	(a) One Stage Pelliconi Charge Pump (b) Proposed NMOS-Based Charge	
	Pump	54
5.6	Proposed Low-Power Multi-Waveform Current Stimulator	55
5.7	Chip Layout for Both Stimulators	58
5.8	Output Stimulation Current Versus Electrode Impedance Variations of	
	Proposed Adaptable Stimulator	58
5.9	Transient Simulation Waveforms of Proposed Multi-Waveform Stimulator	59
5.10	Monte-Carlo Analysis for Generated I_{bias}	60
6.1	Block diagram for the proposed near-field inductive link power supply for	
	implantable neural recording and stimulation SoC	64
6.2	Active voltage doubler circuit schematic	66
6.3	Single-stage op-amp circuit schematic	69
6.4	BGR startup circuit schematic	70
6.5	Circuit layout for the proposed near-field ILPS in 0.13 μm technology	70
6.6	AVD both input and output voltage waveforms with $R_L = 0.5 \text{ K}\Omega$, $C_{IN} =$	
	$C_L = 1 \mu F$, $V_{IN,peak} = 2 \text{V}$, and $f_c = 13.56 \text{MHz}$	71
6.7	Control signals of the proposed on-chip calibration circuit for the imple-	
	mented AVD with achieving the maximum power efficiency	71
6.8	V _{rot} of the proposed BGR across temperature and process variations	72

6.9	V_{ref} of the proposed BGR across supply and process variations	72
6.10	The proposed BGR stability analysis test	73
6.11	PSRR of the proposed BGR across process variations	73
6.12	V_{DD} ramp-up test of the proposed BGR	73
6.13	V_{reg} of the implemented LDO across load current and process variations .	74
6.14	V_{reg} of the implemented LDO across supply and process variations	74
6.15	The implemented LDO stability analysis test	75
6.16	PSRR of the implemented LDO across process variations	75
6.17	Load transient regulation of the implemented LDO across the load range	
	from 1 mA till 20 mA	76
6.18	Transient simulation of the whole loop of the ILPS	77
7.1	Plastics One - Invivo 1-Channel Electrode (MS303/2-AIU/SPC)	
7.2	1	82
7.3	Invivo Electrode Impedance Measurements	83
A.1	Static ENOB calculation (Step 1)	94
A.2	\ 1 /	95
A.3		96
A.4		96
A.5		97
A.6		97
A.7		98
A.8		98
A.9		99
A.10	Static ENOB calculation (Step 10)	00
	Static ENOB calculation (Step 11)	
	Static ENOB calculation (Step 12)	
	Input Signal (sine wave)	
B.2)5
B.3	Cadence calculator during evaluating the time difference between the	
	Start and the Stop signal	
B.4		
B.5	How to calculate the FFT for a specific singal	
B.6	The FFT result	
B.7	FFT in dB scale)8

List of Abbreviations

Abbreviations Description

ACC Anodic Current Controller.

ADC Analog-to-Digital Converter.

AVD Active Voltage Doubler.

BGR Bandgap Reference.

C-DAC capacitive Digital-to-Analog Converter.

CCC Cathodic Current Controller.

CMFB Common Mode FeedBack.

CMOS Complementary Metal Oxide Semiconductor.

CMS Current Mode Stimulation.

DAC Digital-to-Analog Converter.

DCO Digitally Controlled Oscillator.

DNL Differential Non-Linearity.

EA Error Amplifier.

ECG Electrocardiographic.

EEG electroencephalography.

EMG Electromyography.

ENOB Effective Number of Bits.

EOC End Of Conversion.

FFT Fast Fourier Transform.

FIR Finite Impulse Response.

FoM Figure-of-Merit.

HPF High Pass Filter.

ILPS Inductive link Power Supply.

IMDs Implantable Medical Devices.

INL Integral Non-Linearity.

LDO Low-Dropout Regulator.

LFPs Local Field Potentials.

LNA Low-Noise Amplifier.

LP-VTC Low-Power Voltage-to-Time Converter.

LPF Low Pass Filter.

LSB Least Significant Bit.

MSAR Multiplying Successive Approximation Register.

MSB Most Significant Bit.

opamp Operational Amplifier.

OTA Operational Transconductance Amplifier.

PCE Power Conversion Efficiency.

PPM Pulse Position Modulator.

PSRR Power Supply Rejection Ratio.

PVT Process, Voltage and Temperature.

SAR-ADC Successive Approximation Register Analog-to-Digital Converter.

SNR Signal-to-Noise Ratio.

SoC System-on-Chip.

T-ADC Time-Based Analog-to-Digital Converter.

TC Temperature Coefficient.

TDC Time-to-Voltage Converter.

V/I Voltage-to-Current Converter.

VTC Voltage-to-Time Converter.

WPT Wireless Power Transfer.