

HRSG Drum Level Control in Combined Cycle Power Plant Using Fractional Order PI

BY Eng. Yahia Mounir Mahmoud Hamdy Mostafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

IN

ELECTRICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

HRSG Drum Level Control in Combined Cycle Power Plant Using Fractional Order PI

BY Eng. Yahia Mounir Mahmoud Hamdy Mostafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

IN

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Dr. Ahmed Bahgat Gamal Bahgat

Prof. of Electrical Power and Machines Faculty of Engineering, Cairo University

Dr. Mohamed A. Moustafa Hassan

Prof. of Electrical Power and Machines Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Acknowledgements

I owe my deepest gratitude to my supervisors Professor Ahmed Bahgat Gamal Bahgat and Professor Mohamed A. Moustafa Hassan, without their continuous optimism concerning this work, enthusiasm, encouragement and support; this study would hardly have been completed. I wish also to address their constructive criticism following initial review of the thesis.

Lastly and most importantly. I would like to thank my father, my mother, my brother and my wife for their continuous support, encouragement and their unconditional love.

Table of Contents

	Page
Acknowledgements	V
Table of Contents	vi
List of Tables	ix
List of Figures	X
List of Abbreviations	xiii
List of Symbols	xiv
Abstract	xvi
Chapter 1: Introduction and Overview	1-2
1.1 Preface	1
1.2 Objectives Of The Thesis	1
1.3 Organization Of The Thesis	2
Chapter 2: Combined Cycle Power Plant Overview	3-12
2.1. Introduction	3
2.2. Gas Turbine	4
2.3. Heat Recovery Steam Generator (HRSG)	4
2.3.1. HRSG LP AND HP Sections	6
2.3.2. HP AND LP DRUMs	6
2.4. Diverter Damper	8
2.5. Steam Turbine	9
2.6. Water Cooled Condenser	9
2.7. Steam Generation Process Description for CCPP	10
2.7.1. Gas Turbine and HRSG Startup	10
2.7.2. HRSG Temperature Matching With Steam Turbine	11
2.7.3. Steam Turbine Startup	12
2.8. Summary	12
Chapter 3: Control Loops Of HRSG	13-25
3.1 Introduction	13

3.2. Drum Level Control	13
3.3. Drum Continuous Blowdown control	17
3.4. LP Drum Pressure Control (Pegging steam)	20
3.5. LP Economizer Recirculation Temperature control	20
3.6. HP Drum SKY Vent pressure control	21
3.7. HP Steam Temperature control	23
3.8. Steam Turbine HP Control Valve	25
3.9. Summary	25
Chapter 4: Boiler Drum Modeling	26-41
4.1. Introduction	26
4.2. Balance equations for the system	27
4.2.1. Global mass and energy balance equation for the risers	28
4.2.2. Drum Dynamics equation	28
4.2.3. The equations Variables are as follow	29
4.2.4. Steady state conditions to get initial conditions for the Model	29
4.3. HRSG Drum Modeling	29
4.4. Overall Combined Cycle Modeling	39
4.4.1 Control Valve Model	39
4.4.2 Model Assumption	40
4.4.3 Calculating Amount of Heat Flow (Q) Against MW	40
4.4.4 Closed Loop Modeling	41
4.5. Summary	41
Chapter 5: Drum Level Controller Design	42-49
5.1. Introduction	42
5.2. PID Controller	42
5.2.1. Role of a Proportional Controller (PC)	42
5.2.2. Role of an Integral Controller (IC)	43
5.2.3. Role of a Derivative Controller (DC)	43
5.2.4. (PID) Controller	43

5.3. Cascaded Control	44
5.3.1. Cascade Design Criteria	44
5.4. Feedforward Control	45
5.5. Fractional Order PID Controller	46
5.6. Fractional Order PI Tuning	47
5.6.1. The Ziegler-Nichols Methods for Tuning PI Controllers	47
5.6.2. Particle Swarm Optimization	47
5.7. Summary	49
Chapter 6: HRSG Drum Level Control Model Results Using Various Controller	50-64
Design	
6.1. Introduction	50
6.2. Model of Validation by Adding Disturbance	51
6.3. Model of Validation with CCPP Real Data	53
6.3.1. Existing CCPP Proportional Gain	53
6.3.2. Existing CCPP Steam Turbine Control Valve Control	54
6.3.3. Existing CCPP Drum Level PI Controller	55
6.3.4. Results of Validation	56
6.4. Fractional PI in Drum Level Control	61
6.5 Summary	64
Chapter 7: Conclusion and Future Work	65
7.1. Conclusion	65
7.2. Future Works	65
References	66-67
Appendix	68-73

List of Table

Table No.		Title	Page
Table 3-1	:	Drum Level Process Diagram Used Tags	14
Table 3-2	:	Typical Level Setpoint for HRSG Drum Level Startup	16
Table 3-3	:	Drum Continuous Blowdown Control used tags	17
Table 3-4	:	Blowdown tank process diagram Tags	19
Table 3-5	:	Continuous Blowdown Process diagram Tags	21
Table 3-6	:	HRSG Sky Vent Process Diagram Used Tags	21
Table 3-7	:	HRSG HP Steam Process Diagram Used Tags	23
Table 4-1	:	Drum Boiler Parameters	30
Table 5-1	:	PID controller in a closed-loop system	44
Table 5-2	:	Ziegler-Nichols Control Parameters	47
Table 6-1	:	Drum Level Control Tuning Parameter using Ziegler-Nicholas	51
Table 6-2	:	Existing Combined Cycle power PID Level Control Parameters	55
Table 6-3	:	Drum Level Control for Different Controllers Responses	61

List of Figure

Figure		Title	Page
Figure 1-1	:	Combined Cycle power plant overview	1
Figure 2-1	:	Combined Cycle Power Plant Layout	3
Figure 2-2	:	Gas Turbine Brayton Cycle	4
Figure 2-3	:	HRSG Modules	5
Figure 2-4	:	HRSG Drum	8
Figure 2-5	:	Rankin Cycle	9
Figure 2-6	:	Water Cooled Condenser	10
Figure 2-7	:	Gas Turbine Startup Curve	11
Figure 3-1	:	Typical Process Diagram - Drum Level Control	15
Figure 3-2	:	Typical Drum level Control Loop Diagram	15
Figure 3-3	:	Typical Process Diagram Continuous blowdown	18
Figure 3-4	:	Typical Process Diagram Blowdown Tank Discharge Temperature Control	18
Figure 3-5	:	Typical blowdown Tank Temperature Control Loop Diagram	19
Figure 3-6	:	Typical Control Loop Diagram for LP Drum Pressure Control	20
Figure 3-7	:	Typical Process Diagram for Recirculation Temperature control	21
Figure 3-8	:	Process Diagram HP Drum SKY Vent pressure control	22
Figure 3-9	:	Typical Control Loop Diagram for Startup vent (Sky vent)	22
Figure 3-10	:	Process Diagram – HRSG HP Steam Temperature Control	24
Figure 3-11	:	HRSG HP Steam Temperature Control Loop	24
Figure 4-1	:	CCPP Configuration For Four HRSGs On Two Steam Turbines	26
Figure 4-2	:	The Astrom-Bell Schematic Picture of the Boiler	27
Figure 4-3	:	MATLAB Simulink for calculating $(h_f,h_s,h_c,h_w,\boldsymbol{\varrho}_w,\boldsymbol{\varrho}_s,\frac{dh_s}{dP},\frac{dh_w}{dP})$	31
Figure 4-4	:	MATLAB Simulink for calculating $(h_s, \frac{dh_s}{dP})$	31
Figure 4-5	:	Figure (4-4): MATLAB Simulink for calculating $(\mathbf{\varrho}_s, \frac{\partial \varrho_s}{\partial p})$	32
Figure 4-6	:	MATLAB Simulink for Overall equations	32

Figure 4-7	:	MATLAB Simulink for 2nd order equation	33
Figure 4-8	:	MATLAB Simulink for Calculating Vwt	33
Figure 4-9	:	MATLAB Simulink for Calculating e ₁₁ , e ₁₂ , e ₂₁ , e ₂₂	34
Figure 4-10	:	MATLAB Simulink for Calculating α_r	34
Figure 4-11	:	MATLAB Simulink for Calculating q _{dc}	35
Figure 4-12	:	MATLAB Simulink for Calculating e ₃₂	35
Figure 4-13	:	MATLAB Simulink for Calculating e ₃₃	36
Figure 4-14	:	MATLAB Simulink for Calculating ᾱv	36
Figure 4-15	:	MATLAB Simulink for Calculating $\frac{\partial \overline{\alpha}_v}{\partial p}$	37
Figure 4-16	:	MATLAB Simulink for Calculating V_{sd} and Drum Level	37
Figure 4-17	:	MATLAB Simulink for Calculating e ₄₂	38
Figure 4-18	:	MATLAB Simulink for Calculating e ₄₃	38
Figure 4-19	:	Flow Through Control Valve For Liquid Service	39
Figure 4-20	:	Inherent Flow Characteristics Of Typical Control Valves	40
Figure 4-21	:	MATLAB System identification tool	41
Figure 5-1	:	Typical PID Controller	42
Figure 5-2	:	Block Diagram for HRSG Drum Level Control using Cascaded and Feed forward control	45
Figure 5-3	:	HRSG Drum Level Control using Cascaded and Feed forward control	46
Figure 5-4	:	FOPID Block Diagram	47
Figure 6-1	:	CCPP Configuration with Four HRSGs On Two Steam Turbines	50
Figure 6-2	:	Model Data with Increase of One Gas Turbine 40MW	52
		during Four HRSG Operation	
Figure 6-3	:	Model Data with decrease of One Gas Turbine 40MW	52
		During Four HRSGs Operation	
Figure 6-4	:	Proportional Gain range	53
Figure 6-5	:	Proportional Gain equation 6-1 using MATLAB Simulink	54
Figure 6-6	:	MATLAB Simulink Steam Turbine Control Valve	54
		Proportional + Lag Controller	

Figure 6-7	:	MATLAB Simulink For HRSG Drum Level Control Using PI Controller	55
Figure 6-8	:	DCS Screen for Real HRSG HP Drum	56
Figure 6-9	:	MW FOR 4 HRSG Extracted from operating power Plant	57
Figure 6-10	:	Pressure, Total Steam Flow and Control Valve% For Model Data Vs Real Data	58
Figure 6-11	:	Steam flow For Four HRSGs For Model Data VS Real Data	59
Figure 6-12	:	HRSG Drum Level for Three HRSG For Model Data VS Real Data	60
Figure 6-13	:	Drum Level Control for Different controllers	62
Figure 6-14	:	HRSG Fractional Order PI MATLAB for Drum Level Control	62
Figure 6-15	:	HRSG Sudden decrease of Steam Flow by 37%	63
Figure 6-16	:	Drum Level Control Response For 37% Decrease of Steam flow	63

List of Abbreviations

CCPP Drum volume (m³)

HRSG Drum down comer volume (m³)

NWL Drum riser volume (m³)

GT Steam bubbles volume under water level

 (m^3)

RDLI Water total volume (m³)

DP Average volume fraction

CPH Steam Density

HP High Pressure

LP Low Pressure

PID Proportional Integral Derivative Controller

IC Integral Controller

DC Derivative Controller

PSO Particle Swarm Optimization

List of Symbols

A_d Drum area (m²)

A_{dc} Down comer area (m²)

Alpha (α_r) Steam quality at the riser (%)

Beta (β) Empirical coefficient

C_p Metal specific heat capacity (Pascal.m³/kg.K)

h_c Condensation Enthalpy

h_f Feedwater Enthalpy

h_s Steam Enthalpy

h_w Water Enthalpy

K Friction coefficient in down comer

L Drum Level

 M_d Drum mass (kg) M_r Riser mass (kg)

M_t Total metal mass (kg)

P Pressure (Pascal)

Q Amount of heat flow rate added to the system

q_{dc} Total mass flow rate into the risers

q_f Feedwater flow rate (kg/s)

 q_s Steam flow rate (kg/s)

T_d Residence time of steam in drum(s)

T_f Feedwater Temperature

V_{0sd} Steam bubbles volume in the hypothetical situation

V_d Drum volume (m³)

V_{dc} Drum down comer volume (m³)

 V_r Drum riser volume (m³)

V_{sd} Steam bubbles volume under water level (m³)

 V_t $V_d + V_r + V_{dc}$; Total drum volume (m³)

 $\begin{array}{ll} V_{wt} & & Water\ total\ volume\ (m^3) \\ \hline \bar{\alpha v} & & Average\ volume\ fraction \end{array}$

Qs Steam Density

Qw Water Density

ABSTRACT

An important issue in the combined cycle power plant operation is the control of drum water level in the boiler. Under steady operating conditions, the drum level is usually stable. However, for power plants that are frequently changing load or subject to sudden disturbances, in such circumstances poor control can result in costly plant trip or even serious damage by boiling the drum or carrying water over into the steam turbine.

Accordingly, in the Thesis, the combined cycle power plant main components are introduced as well as the main control loops for the Heat Recovery Steam Generator (HRSG). The HRSG drum level control is studied. A MATLAB model is developed to simulate the heat flow rate for four gas turbines feeding four HRSG drums, and four HRSG drums steam flow feeding two steam turbines control valves through common steam header, as shown in Figure (4-1) and Figure (6-1). The steam turbine control valves are operated using Sliding Mode pressure control.

The drum level controller is a three Element drum level control with cascaded and feed-forward control. In the thesis the disturbance is represented as one gas turbine trip, and the drum level of the other three HRSGS is controlled using conventional PI controller. Then Fractional Order PI Controller is introduced to the closed loop drum level control.

It was proven that the fractional order controller utilized to achieve drum water level control of HRSG, gives better results: less settling time, undershoot and overshoot, under different disturbances compared with conventional PI controller.

Engineer: Yahia Mounir Mahmoud Hamdy Mostafa

Date of Birth: 01/09/1988 Nationality: Egyptian

E-mail: yahiamounir@hotmail.com

Register Date: 01/10/2011

Awarding Date: 2018

Degree Master of Science

Department Electrical Power and Machines Engineering

Supervisors Prof. Ahmed Bahgat Gamal Bahgat

Prof. Mohamed Ahmed Moustafa Hassan

Examiners Prof. Ahmed Bahgat Gamal Bahgat (Thesis Main Advisor)

Prof. Mohamed Ahmed Moustafa Hassan (Advisor)

Prof. Mohamed Mohamed Fahim Sakr (Internal Examiner)
Prof. Fahmy Metwally Ahmed Bendary (External Examiner)

Faculty of Engineering (Shubra), Benha University

Title of Thesis HRSG Drum Level Control in Combined Cycle Power Plant Using Fractional Order PI

Keywords Power Plant, HRSG, Combined Cycle, Fractional order PI, Drum Level control

Summary An important issue on the combined cycle power plant control is the control of drum water level in the boiler. Under steady operating conditions, the drum level control is usually stable.

However, for power plants that are frequently changing load or subject to sudden disturbances,

In such circumstances poor control can result in costly plant trip or even serious damage by boiling the drum or carrying water over into the steam turbine. Accordingly, In the Thesis, the

combined cycled power plant main components are introduced as well as the main control loops

for the Heat Recovery Steam Generator (HRSG). The Thesis will study the HRSG drum level

control. The MATLAB model will simulate the heat flow rate for four gas turbines feeding four

HRSGs drum and four HRSGs drum steam flow feeding two steam turbines control valves

through common steam header. The steam turbine control valves are operated using Sliding

Mode pressure control. The drum level controller is a three Element drum level control with

cascaded and feedforward control; the thesis will illustrate the disturbance of one gas turbine trip in the drum level of the other three HRSGS using classical PI controller. Then fractional order

PI Controller is introduced to the closed loop drum level control. It is proven that the fractional

order controller utilized to achieve drum water level control of HRSG, achieves better results

with less settling time, undershoot and overshoot under different disturbances compared with

classical controller.

