

DESIGN OF PHOTOVOLTAIC SYSTEMS FOR REMOTE VILLAGE IN YEMEN

By

Ibrahim Saleh Mohammed Almaghrebi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

DESIGN OF PHOTOVOLTAIC SYSTEMS FOR REMOTE VILLAGE IN YEMEN

By

Ibrahim Saleh Mohammed Almaghrebi

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Doaa Khalil Ibrahim

Dr. Mohamed Abdul Raouf Shafei

Electrical Power and Machines

Department

Faculty of Engineering,

Cairo University

Electrical Power and Machines

Department

Faculty of Engineering,

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

DESIGN OF PHOTOVOLTAIC SYSTEMS FOR REMOTE VILLAGE IN YEMEN

By Ibrahim Saleh Mohammed Almaghrebi

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:	
Prof. Dr. Doaa Khalil Ibrahim	Thesis Main Advisor
Prof. Dr. Essam El-Din Abo El-Zahab	 Internal Examiner
Prof. Dr. Said Abd El Monem Wahsh (Electronics Research Institute)	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Ibrahim Saleh Mohammed Almaghrebi

Date of Birth: 1/1/1988 **Nationality:** Yemeni

E-mail: Ibrahim.almaghreby@gmail.com

Phone: +201149890098

Address: King Fasil st- Giza – Egypt

Registration Date: 1/10/2014 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Doaa Khalil Ibrahim Dr. Mohamed Abdul Raouf Shafei

Examiners:

Prof. Dr. Said Abd El Monem Wahsh (External Examiner)

Electronics Research Institute

Prof. Dr. Essam El-Din Abo El-Zahab (Internal Examiner) Prof. Dr. Doaa Khalil Ibrahim (Thesis Main Advisor)

Title of Thesis:

DESIGN OF PHOTOVOLTAIC SYSTEMS FOR REMOTE VILLAGE IN YEMEN

Key Words:

Photovoltaic, Hybrid system, Life Cycle Cost, LBBO, LVRT

Summary:

In this thesis, the design of photovoltaic systems for a remote village in Yemen is presented. The design includes stand-alone PV system and hybrid system with diesel generator, also the possibility of connecting PV system to the national network is also studied. In order to provide practical design for this village, the data was collected through the Ministry of Electricity in Yemen. It includes solar radiation and temperature, in addition to a field investigation is conducted to estimate the electrical loads.

To choose the optimal design for feeding the village, a comparison was done through two methods: the first by using heuristic approach and the second through the use of HOMER program. The first method depends on calculating the sizes of the various components of the system, such as the number of PV panels, number of batteries and diesel generator capacity, according to the lowest cost on the lifetime of the system and the most reliable system. While the second method is based on HOMER optimization program, the program is also used to study the effect of the variation in solar radiation and interest rate factor on the cost of energy for systems.

A MATLAB / SIMULINK model for a PV grid connected system is also implemented. A maximum power point tracking algorithm is applied to extract as much energy as possible during solar radiation change. PI controller is also applied in the structure of the inverter. Its parameters are optimized using Linearized Biogeography Based Optimization technique (LBBO). Also, the low voltage ride through (LVRT) control was carried out to keep the PV array connected to the grid during voltage sags.

ACKNOWLEDGMENTS

Thanks to Almighty **ALLAH**, the Merciful and the Beneficent, who give me health, thoughts and ability to work.

Thanks **ALLAH**, You are the unique donor for all achievements especially this work.

I would like to thank and appreciate my supervisor, **Prof. Dr. Doaa Khalil Ibrahim**, for her supervision, guidance, helpful discussions, and valuable time. I pray to **ALLAH** to give her the health and happiness.

I would like deeply to express my sincere thanks and heartiest gratitude to thank my supervisor, **Dr. Mohammed Abdul Raouf Shafei**, for his great faithful supervision, his guidance, encouragement and great patient during the period of this research.

I would like to thank all my **family**, in special to my **mother**, my **brothers**, and my **sisters** for their continuous care, support, and patience. I also would like to thank all my **colleagues** and **friends**.

Last, but not least, I would like to thank my **wife** for the long support in my dreams and for understanding and handling long lone periods while I was working to finish this phase of our life. My appreciation goes to my son, **Ezzat**, with whom I did not have much time to spend during the final days of my studies.

DEDICATION

This thesis is dedicated to my dead **father** who has been a great source of motivation, love, and inspiration.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	i
DEDICATION	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS AND ABBREVIATIONS	xi
ABSTRACT	
CHAPTER(1): INTRODUCTION	1
1.1. Overview	1
1.2. Problem Statement	2
1.3. Thesis Objectives	2
1.4. Power Sector in Yemen	3
1.4.1. Background of Yemen Power Plants	3
1.4.2. Characteristics of Yemen Power System	4
1.4.3. Energy Consumption Profile	4
1.4.4. Renewable Energy Sources Potentials	5
1.4.4.1. Solar energy potential	5
1.4.4.2. Wind energy potential	6
1.4.4.3. Geothermal energy potential	6
1.5. Overview of PV Systems Design	
1.6. Thesis Layout	7
CHAPTER(2): SOLAR ENERGY CONVERSION AND SYSTEM CONFIGURATIONS	
2.1. Solar Energy Conversion	8
2.1.1. Thermal Conversion	9
2.1.2. Electrical Conversion	10
2.2. Types of PV Panels	10
2.2.1. Crystalline Silicon Cells	10
2.2.1.1. Monocrystalline Solar Cells	10
2.2.1.2. Polycrystalline Solar Cells	10
2.2.2. Thin Film Amorphous.	10

2.2.3. Hybrid	PV Cells			11
2.3. Modeling of	of PV System			11
2.3.1. Ideal PV	/ cell			11
2.3.2.PV Arra	ny Modeling			13
2.3.3. Factors	Affecting PV Cha	aracteristic	es Curves	15
2.4. PV System	s Configurations			16
2.4.1. Stand-A	lone Systems			17
2.4.2. Grid-Co	onnected Systems			17
2.4.2.1.	Centralized conf	iguration .		18
2.4.2.2.	String configurat	ion		18
2.4.2.3.	Module integrate	ed configu	ration	18
2.4.2.4.	Grid connection	– power q	uality issue	19
2.4.3. Hybrid	PV- Battery - Die	sel Systen	1	20
2.5. Photovolta	ic Converters			21
2.5.1.DC to E	C Converter			21
2.5.1.1.	Boost converter			21
2.5.1.2.	Buck -Boost Co	nverter		22
2.6. Battery Sto	orage Systems			22
2.6.1. Battery	Types			22
2.6.1.1.	Primary battery.			23
2.6.1.2.	Secondary batter	y		23
2.6.2. Descript	tion of the Battery	/ Electrica	l Performance	23
				24
CHAPTER(3)): OVERVIEV	W ON P	V SYSTEM SIZ	ZING AND LIFE
	•			26
3.1. Sizing Mod	del of PV Systems	S		26
				26
3.1.2. Energy	Storage			27
				27
	_			27
				28
				28
J		-	. , ,	
CHAPTER(A)· SIZING	AND	ECONOMIC	EVALUATION
CIIII I III(4)	•			31
4.1 Description	of Case Study			31

4.1.1. Environmental Data	31
4.1.1.1. Solar radiation	31
4.1.1.2. Ambient temperature	32
4.1.1.3. Tilt angle	33
4.1.2. Electrical Load Consumption	33
4.2. System Components Specifications	34
4.3. Sizing and Cost Results Using Heuristic Technique	35
4.3.1. Sizing of Stand – Alone Diesel Generator	35
4.3.2. Sizing of Stand –Alone PV system	37
4.3.3. Sizing of Hybrid PV-Diesel System	39
4.3.4. Sizing of PV- Grid Connected System	40
4.3.5. Emissions Calculation for Standalone Diesel System and Hybrid System	ı41
4.4. Sizing and Economic Evaluation Using HOMER	42
4.4.1. Inputs of HOMER Program	42
4.4.1.1. Solar resource data inputs	42
4.4.1.2. Primary load data inputs	43
4.4.1.3. Economic inputs	43
4.4.1.4. Parameters of components inputs	43
4.4.2. HOMER Optimization Results	44
4.4.2.1. Sizing of Stand – Alone Diesel Generator	44
4.4.2.2. Sizing of Stand–Alone PV System	45
4.4.2.3. Sizing of Hybrid PV-Diesel System	47
4.4.2.4. Sizing of PV-Grid Connected System	50
4.4.3. HOMER Sensitivity Results	52
4.4.4. Emission Calculations	53
4.5. Comparison Between Different Configurations	54
4.5.1. Economical Comparison Between the Two Methods	55
4.5.2. Environmental Comparison between The Two Techniques	55
CHAPTER(5): CONTROLLING OF PV-GRID CONNEC	TED
SYSTEM FOR MPPT AND LVRT	57
5.1. Maximum Power Point Tracking (MPPT)	57
5.2. Modeling and Control of PV- Grid Connected System	59
5.2.1. DC-DC Boost Converter and the MPPT	60
5.2.2. Controlling of Voltage Source Inverter (VSI)	62
5.3. PV Low Voltage Ride Through	63
5.3.1. Applied LVRT Control Strategy Based on Reactive Current Compensat	ion 64

5.4.	Simulation	n Results	65
5	.4.1.For MF	PPT Control	68
5	.4.2. For LV	RT Control	70
	5.4.2.1.	At sagging depth of 0.6 pu	70
	5.4.2.2.	At sagging depth of 0.3 pu	72
	5.4.2.3.	At sagging depth of 0.1 pu	74
СН	APTER(6	5): CONCLUSIONS AND FUTURE WORK	75
6.1.	Conclusio	ns	75
6.2.	Future Wo	ork	76
AP	PENDIX	A: SPECIFICATIONS OF SYSTEMS COMPO	
A1:	Specification	ons of PV module at STC	
	_	ons of diesel generator	
A3:	Specification	ons of battery	86
AP	PENDIX		
B1-	C 1 CC:	B: SIZING AND COST ESTIMATED PROCUSING M FILE MATLAB	
	Code of Siz		87
B2-0		USING M FILE MATLAB	8 7

LIST OF TABLES

Table 2.1: Recommended odd harmonic distortion limits in IEEE Std. 519-	
1992 for six-pulse converters	. 20
Table 2.2: Advantages and disadvantages comparison for some batteries	. 23
Table 4.1: The daily load energy consumption of Makhref village	.34
Table 4.2: Photovoltaic panel's specifications at Standard Test Conditions	
(STC)	. 34
Table 4.3: Technical data and cost data for battery	.35
Table 4.4: Technical data and cost data for inverter	.35
Table 4.5: Technical data and cost data for diesel generator	.35
Table 4.6: The cost results of stand-alone diesel generator system	.37
Table 4.7: Summarized cost analysis for stand-alone PV system	.38
Table 4.8: Summarized cost analysis of hybrid PV- diesel system	. 39
Table 4.9: Cost analysis of PV- grid connected system with battery	.40
Table 4.10: Cost analysis of PV- grid connected system without battery	.41
Table 4.11: Annual emission factors for the standalone diesel system and	
hybrid system	.41
Table 4.12: Cost analysis of stand-alone PV system using HOMER	.47
Table 4.13: Summarized cost analysis for hybrid PV-diesel system using	
HOMER	.48
Table 4.14: Summarized cost analysis of PV-grid connected with batteries	
using HOMER	.51
Table 4.15: Summarized cost analysis of PV-grid connected system without	
batteries using HOMER	.52
Table 4.16: Comparison of annual emissions between a standalone diesel	
system and hybrid systems using HOMER	. 54
Table 4.17: Cost of energy for different system configurations (\$/kWh)	.55
Table 4.18: Comparison of calculated emissions released using heuristic	
technique and HOMER	. 55
Table 5.1: Parameters of the simulated system	. 65

LIST OF FIGURES

Figure 1.1: Evolution of global total solar PV installed capacity 1998-2017.	1
Figure 1.2: Share of installed capacity of Yemen power plants in 2014	4
Figure 1.3: Energy consumption (GWh) profile in 2016	5
Figure 2.1: Flat plate solar thermal collector	9
Figure 2.2: Concentrated solar power plant	9
Figure 2.3: HIT structure	11
Figure 2.4: Basic equivalent circuit of photovoltaic cell	12
Figure 2.5: I-V characteristic curve of a PV cell	12
Figure 2.6: Construction of PV array	13
Figure 2.7: Characteristic I-V and P-V curves of practical PV cell	14
Figure 2.8: Irradiance effect on the PV characteristics	15
Figure 2.9: Temperature effect on the PV characteristics	16
Figure 2.10: Classification of PV systems	16
Figure 2.11: Block diagram of stand-alone PV scheme with storage	17
Figure 2.12: Grid connected - PV system configurations: a) centralized	
configuration, b) string configuration, c) module integrated	
configuration	19
Figure 2.13: Hybrid PV-diesel scheme	20
Figure 2.14: Boost converter	21
Figure 2.15: Buck – Boost Converter	22
Figure 2.16: Expected number of cycles with respect to battery DOD	24
Figure 3.1: Flowchart for sizing a PV stand-alone system	30
Figure 4.1: Monthly solar radiation for Makhref village	32
Figure 4.2: Monthly average ambient temperature for Makhref village	32
Figure 4.3: Daily load profile of Makhref village	33
Figure 4.4: Annual solar radiation data	43
Figure 4.5: Primary load data inputs to HOMER	44
Figure 4.6: Cash flow of diesel generator	45

Figure 4.7: Simulating stand-alone PV system in HOMER45
Figure 4.8: Daily output power of PV stand-alone system during a year46
Figure 4.9: Excess electrical production (kW) of PV stand-alone system during
a year46
Figure 4.10: Cash flow of PV stand-alone system
Figure 4.11: Simulating a hybrid PV-diesel system in HOMER48
Figure 4.12: Annual cash flow of hybrid PV-diesel configuration
Figure 4.13: Electrical production (kW) of hybrid PV-diesel system
Figure 4.14: Simulating PV-grid connected system in HOMER50
Figure 4.15: Daily profile of power purchased from grid for PV-grid connected
system during a year50
Figure 4.16: Daily profile of power sold to grid for PV-grid connected system
during a year51
Figure 4.17: Electrical production (kW) of PV- grid connected system 52
Figure 4.18: Sensitivity analysis for the effect of the economic (interest rate)
and environmental conditions (solar radiation) on levelized cost of
energy53
Figure 4.19: Carbon monoxide emissions factor for diesel generators according
to NREL54
Figure 5.1: DC – DC converter operation at the MPP57
Figure 5.2: Perturb and Observe algorithm
Figure 5.3: A diagram for modeling PV- grid connected system
Figure 5.4: The methodology of IC method based on a P-V curve of a PV
module60
Figure 5.5: Simulating IC MPPT with integrator control
Figure 5.6: Block diagram for power control of DC converter61
Figure 5.7: Structure of VSI
Figure 5.8: Diagram of PLL
Figure 5.9: The required percentage of reactive current during LVRT according
to E.ON code64
Figure 5.11: The flowchart of LVRT control

Figure 5.11	: AC voltage waveform6	6
Figure 5.12	: RMS voltage at the parameters of ki=800, kp =100, 7 and 2 6	7
Figure 5.13	: RMS voltage at the parameters of kp=7, ki =1200, 100 and 206	7
Figure 5.14	: RMS voltage at the parameters achieved using LBBO technique	
	compared to other parameters6	7
Figure 5.15	: The received and injected power to grid according to amount of	
	irradiation6	8
Figure 5.16	: Waveforms of DC side without implementing an integrator with	
	MPPT controller6	9
Figure 5.17	: Waveforms of DC side with an integrator with MPPT controller 7	0
Figure 5.18	: Waveforms of AC side during 0.6 sagging without LVRT control	
	(5.18-a voltage, 5.18-b current, 5.18-c power)	1
Figure 5.19	: Waveforms of AC side during 0.6 sagging with LVRT control	
	(5.19-a voltage, 5.19-b current, 5.19-c power)	2
Figure 5.20	: A PV array voltage during 0.6 sagging with LVRT control7	2
Figure 5.21	: Phase voltage and current with sagging of 0.3 pu without LVRT	
	control (5.21-a voltage, 5.21-b current)	3
Figure 5.22	: Phase voltage and current with sagging of 0.3 pu with LVRT	
	control (5.22-a voltage, 5.22-b current)	3
Figure 5.23	: Active/Reactive power of inverter with sagging of 0.3 pu and	
	LVRT control	3
Figure 5.24	: Waveforms of AC side during 0.1 sagging with LVRT control	
	(5.24-a voltage, 5.24-b current, 5.24-c power)	4

LIST OF SYMBOLS AND ABBREVIATIONS

1-Symbols

A : The annual payment (\$).

C_D: The diesel generator cost (\$) per kW.

C_t: The total capital cost (\$).

 $C_{n\&m}$: The total operation and maintenance cost (\$).

 C_{REP_hat} : The total present replacement cost of batteries (\$).

 $C_{REP-inv}$: The total present replacement cost of inverter (\$).

 C_{sa} : The total salvage cost (\$).

D : Duty cycle.

 E_g : Band gap for silicon (1.11 e.v).

E_L : The daily load energy demand (kWh).

F : The single payment (\$).

F_{pr} : Fuel price per liter (\$).

H_D : The amount of oil required in liter per day (liter/day).

I_d : The normal diode current (A).

I_{mpp} : Maximum power point current of PV module (A).

I_n : The normal current of inverter (A).

I₀ : The cell reverse saturation current (A).

I_{pv}: The PV current (A).

 $I_{pv\;cell}$: The cell photo current (A).

I_{sc} : The short circuit current (A).

i : Interest rate (%).

K : Boltzmann's constant (1.38×10⁻²³ joule/°k).

K_D : The percentage of the initial generator cost (%).

K_i : Integral gain.

K_p : Proportional gain.

 K_t : The temperature coefficient at short circuit current (Amp/ $^{\circ}$ C).

 K_v : The temperature coefficient at open circuit voltage (V/°C).

N : No. of replacements.

n : The lifetime of the project (years).

N_C: The number of cloudy days.