

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

CONVEXITY STUDY IN RIEMANNIAN MANIFOLDS

THESIS

SUBMITTED TO DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE, TANTA UNIVERSITY
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN (Pure Mathematics)

BY

Ibrahim Ahmed El-Bastawesy Sakr

Assistant Lecturer, Mathematics Department Faculty of Engineering-Shoubra, Zagazig University

Under the Supervision of

Dr. M. Beltagy

Professor of Pure Mathematics Faculty of Science, Tanta University Dr. M. I. M. Hessein

Professor of Pure Mathematics Faculty of Engineering-Shoubra Zagazig University

1996

CONVEXITY STUDY IN RIEMANNIAN MANIFOLDS

THESIS

SUBMITTED TO DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE, TANTA UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN (Pure Mathematics)

BY

Ibrahim Ahmed El-Bastawesy Sakr

Assistant Lecturer, Mathematics Department Faculty of Engineering-Shoubra, Zagazig University

Under the Supervision of

Dr. M. Beltagy
Professor of Pure Mathematics
Faculty of Science,
Tanta University

Dr. M. I. M. Hessein Professor of Pure Mathematics Faculty of Engineering-Shoubra Zagazig University

SUPERVISORS

Company of the case of

Dr. M. Beltagy

Professor of Pure Mathematics
Faculty of Science, Tanat University

Dr. M. I. M. Hessein

Professor of Pure Mathematics, Faculty of Engineering- Shoubra Zagazig University,

Head of Mathematics Department

(Prof. Dr. M. O. Shaker)

To

My Mother
The Memory of my Father and my Brother
To My Wife
To My Family

CURRICULUM VITAE

Name : Ibrahim Ahmed El-Bastawesy Sakr.

Date of Birth : 28-8-1959

Locally : Mahala Ziad

Nationality : Egyptian

Qualification : B.Sc. Degree in Mathematics (1982), Faculty of Science,

Tanta University.

M.Sc. Degree in Mathematics (1992), Faculty of Science,

Tanta University.

Head of Mathematics Department

(Prof. Dr. M. O. Shaker)

ACKNOWLEDGEMENT

I would like to express my deep gratitude to Prof. Dr. M. O. Shaker Head of Mathematics Department, Faculty of Science, Tanta University, for his kind help.

I heartily thank Prof. Dr. M. Beltagy, Professor of Mathematics, Faculty of Science, Tanta University, who suggested the research topics, supervised the work and also provided with a truthful aid and sincere encouragement during the research.

My thanks are also due to Prof. Dr. M. I. Hessein, Professor of Mathematics, Mathematical and Natural Sciences Department, Faculty of Engineering of Shoubra, Zagazig University, and Dr. M. El-Ghoul, Assistant Professor of Mathematics, Faculty of Science, Tanta University, for their valuable advices, continuous encouragement and support.

CONTENTS

	Page
PREFACE	
CHAPTER I: INTRODUCTION	
1.1- Manifolds and Submanifolds	1
1.2- Riemannian Manifolds	5
1.3- Connexion on Manifolds	6
1.4- On Submanifolds	9
1.5- Manifolds without Conjugate Po	oints 15
1.6- Convexity	20
CHAPTER II: K-CONVEXITY IN EUCLIDEAN 3-SPACE	
2.1- Introduction	29
2.2- Main Results	31
CHAPTER III : CONVEXITY CONDITIONS IN RIEMAN	NIAN MANIFOLDS
3.1- Introduction	45
Section A: Convexity and Boundary	Points 45
Section B: Uniform Convexity	52
CHAPTER IV: SUPPORTING FUNCTION IN RIEMANNIAN	N MANIFOLDS
WITHOUT FOCAL POINTS.	
4.1- Introduction	62
4.2- Main Results	63
REFERENCES	74
ARABIC SUMMARY	

Preface

This thesis includes a study of the necessary and sufficient conditions for convexity of subsets in general Riemannian manifolds with applications in special types of manifolds such as Euclidean, hyperbolic and elliptic spaces.

The whole thesis consists of four chapters, an introduction (Chap. I) together with three chapters (Chap. II, Chap. IV) which contain the main results we have established.

In Chapter I, we have quoted the necessary background material for the following three chapters. Accordingly, we wrote few sections on manifolds, submanifolds, Riemannian manifolds, connexions, convexity and forms, ..., etc, which are important for our study.

In (1990), D. mejia and D. Minda established the concept of K-convex region Ω with boundary $\partial\Omega$ in Euclidean 2-space E^2 [21]. The main aim of Chapter II is to define and study the concept of k-convexity of regions in the Euclidean 3-space E^3 . In this chapter we established some results relating the k-convexity property to other geometric characteristics such as the sectional curvature as well as the focal points of the boundary of the considered region. The main results of this chapter have been accepted for publication in the

"Communications of Faculty of Science, University of Ankara" Vol. 44 (1995) under the same title.

Chapter III has been devoted to deal with another type of convexity called uniform convexity. This chapter consists of two sections A and B.

In (1979), K. P. R. Sastry and S. V. R. Naidu [24] proved a remarkable result which gives a sufficient condition for convexity of a subset of a topological vector space. Also they defined and studied uniformly convex subsets of metric linear spaces.

In Section A (Chapter III) we established some necessary and sufficient conditions for convexity as well as strict convexity of subsets in different types of Riemannian manifolds. The main results of this section have been published in Delta J. of Science 18 (3), (1994), 11-18.

In Section B (Chapter III), the uniform convexity as well as strict uniform convexity have been defined and studied for subsets of Riemannian manifolds. We have established the necessary and sufficient conditions for a Riemannian manifold without conjugate points to be free from focal points in terms of the uniform convexity concept. The main results of this section have been accepted for publication in the Communications of the Faculty of Sciences, Ankara University, Vol. (45) (1996).