

ROLE OF MRI IN EVALUATION OF ANTERIOR KNEE PAIN

Thesis

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By Sara Ibrahim Abd El_Aziz Sakr (M.B.B.Ch, M.Sc)

Supervisors Prof. Dr. Khaled Mohamed El Shantely

Professor of Radio-diagnosis, Faculty of Medicine- Cairo University

Dr. Talaat Ahmed Hassan

Lecturer of Radio-diagnosis, Faculty of Medicine- Cairo University

Dr. Sherif Galal Mohamed

Lecturer of orthopedic surgery, Faculty of Medicine- Cairo University

Cairo University 2014 - 2015

Acknowledgement

My endless and everlasting, thanks to **Allah**, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and extreme appreciation to **Prof. Dr. Khaled Mohamed El Shantely,** professor of Radio_diagnosis, Faculty of Medicine, Cairo University for his kind supervision throughout the whole work which could not be a fact, without his guidance and kind help.

I would like to express my great thanks and gratitude to **Dr. Talaat Hassan**, lecturer of Radio_diagnosis, Faculty of Medicine, Cairo University whom I overloaded too much throughout the whole work, he provided me with continuous advice and help for completion of this work.

Also I would like to send special thanks for **Dr. Sherif Galal Mohamed**, lecturer of orthopedic surgery, Faculty of Medicine, Cairo University, for his great support, and valuable assistance throughout the whole work.

I' m also very grateful and thankful for the **patients** who were included in this study, for their great role in bringing out this thesis and further helping other patients in their treatment.

Last and not least I would like to express my respect and my deepest appreciation to my Family especially my Mother, my Father and my Sisters for their assistance, encouragement and their prayers for me.

Abstract

This study included 70 patients (46 female and 24 male). Their ages ranged between 10-60 years (average age 30 years). All presented by anterior knee pain and were referred to radio-diagnosis department of Cairo University Hospital or private centers for MRI examination. The preliminary results have shown the great role of MRI in the diagnosis of different pathological conditions causing anterior knee pain and in guiding further clinical management.

(**Key Words**: MRI- Anterior knee pain)

Contents

Contents

Abstract	2
List of Abbreviations	6
List of tables	7
List of Figures	9
1- Introduction & Aim of the work	13
2- Technique and Normal Anatomy of Knee MRI	15
2.1 Technique	15
2.1.1 Positioning and Coil Selection	15
2.1.2 Pulse Sequences/Image Planes	15
2.1.3 Conventional Protocol	19
2.2 Normal MRI Anatomy	20
2.2.1 Sagittal plane	20
2.2.2 Coronal Plane	22
2.2.3 Axial Plane	24
3- Different Etiologies of Anterior Knee Pain and Their	26
MRI Manifestations	
3.1 Different Etiologies of Anterior Knee Pain	26
3.2 MRI manifestations of anterior knee pain	27
pathologies	
3.2.1 Articular cartilage injury	27
3.2.2 Chondromalacia Patella (CP)	32
3.2.3 Infrapatellar and suprapatellar fat pad (Hoffa's	36
disease)	

Contents

3.2.4 Osgood-Schlatter disease (OSD)	37
3.2.5 Patellar instability/subluxation	39
3.2.6 Patellar Tendinopathy	47
3.2.7 Pes anserine Bursitis	48
3.2.8 Prepatellar bursitis (PPB) or housemaid's knee	50
and Infrapatellar bursitis (IPB)	
3.2.9 Plica synovialis	52
3.2.10 Quadriceps Tendinopathy	54
3.2.11 Sinding–Larsen–Johansson syndrome (SLJ)	57
3.2.12 Bipartite patella	58
4- Patient and Methods	60
5- Results	67 5.5
6- Case Presentation	75
Case 1	75
Case 2.	76
Case 3	77
Case 4.	78
Case 5	79
Case 6.	80
Case 7	81
Case 8	83
Case 9	85
Case10	86
Case 11	87
Case 12	88

Contents

Case 13	89
Case 14	90
Case 15	92
Case 16	93
7-Discussion	94
Summary & Conclusion	106
References	108

List of Abbreviations

ACL	Anterior cruciate ligament
AKP	Anterior knee pain
СР	Chondromalacia patella
FFE	Fast field echo
FOV	Field of view
FSE	Fast spin echo
IPB	Infrapatellar bursitis
ITB	Iliotibial band
LCL	Lateral collateral ligament
LTI	Lateral trochlear inclination
MCL	Medial collateral ligament
MPS	Mediopatellar plica syndrome
MRI	Magnetic resonance imaging
OSD	Osgood Schlatter disease
PA	Patella alta
PCL	Posterior cruciate ligament
PD	Proton density
PFPS	Patella femoral pain syndrome
PPB	Prepatellar bursitis
PT	Patellar tendinitis
QT	Quadriceps tendon
SE	Spin echo
SI	Signal intensity
SLJ	Sinding-Larsen-Johansson syndrome
STIR	Short time inversion recovery
TE	Time of echo
TR	Time of repetition

List of Tables

Table 1: Common Causes of Anterior Knee Pain	26
Table 2: Grading of Chondromalacia patella	33
Table 3: MRI sequences parameters on high field strength	62
scanners	
Table 4: MRI grading of chondromalacia patella	62
Table5: Classification of trochlear dysplasia	64
Table6 : The descriptive statistics of the age of the patients	67
sample	07
Table7: Distribution of the sample according to sex	67
Table8: Percentages of the prevalence of different causes of	68
anterior knee pain by sex	00
Table9: Demonstrates the prevalence of 11 diseases entity	
found among the patients in the study sample. This	69
table shows the largest percentage of the patients	09
suffer from chondromalacia patella	
Table10: Demonstrates overlapping between patients who	70
have more than one disease	70
Table11: Demonstrates percentage of sex prevalence among	71
different diseases	/1
Table12: Demonstrates percentage of prevalence of	
different grades of chondromalacia patella	72
	12

List of Tables

Table13: Demonstrates percentage of different grades of	
trochlear dysplasia among the patients with patellar	73
instability	
Table14: Demonstrates percentage of patellar instability and	
transient patellar dislocation 72% and	73
27% respectively out of total number of patellar	13
dislocation (18 patients)	
Table15: Demonstrates the statistically calculated minimum,	
maximum, median and mean values of trochlear	74
groove depth by (mm), trochlear facet asymmetry	/4
by (%) and lateral inclination angle by(°)	

Figure1: Normal MRI appearance of Medial and Lateral	20
Menisci	
Figure2: Normal MRI appearance of the Cruciate	21
Ligaments	
Figure3: Normal MRI appearance of Patellar and	22
Quadriceps tendons	
Figure4: Normal MRI appearance of Lateral collateral	23
ligament	
Figure5: Normal MRI appearance of Medial collateral	23
ligament	
Figure6: Normal MRI appearance of patellar, cruciate	25
ligaments and periarticular tendons	
Figure7: MRI appearance of articular cartilage delamination	28
Figure8: MRI appearance of unexpected chondral shear	29
injury associated with lateral meniscal tear	
Figure9: MRI appearance of osteochondral injury	30
Figure 10: MRI appearance of characteristic transchondral	31
fracture	
Figure 11: MRI image of large unstable osteochondritis	32
dissecans	
Figure12: MRI appearance of Chondromalacia patella	34
grade I	
Figure 13: MRI appearance of Chondromalacia patella grade II.	34

Figure 14: MRI appearance of Chondromalacia patella grade III	35
Figure 15: MRI appearance of Chondromalacia patella grade IV	35
Figure16: MRI appearance of Hoffa impingement syndrome	36
Figure 17: MRI appearance of Osgood–Schlatter disease	38
Figure 18: MRI appearance of Non-resolved Osgood—	38
Schlatter lesion	
Figure19:MRI appearance of Patellar dislocation (relocated)	40
Figure 20: MRI appearance of Recurrent patellar dislocation	41
Figure21:MRI appearance of Four types of trochlear	42
dysplasia	
Figure 22: MRI assessment of Lateral trochlear inclination	43
angle	
Figure23: MRI assessment of Trochlear facet asymmetry	44
Figure24: MRI assessment of Trochlear depth	44
Figure25: MRI appearance of Patellar alta and maltracking	46
Figure26: MRI appearance of patellar tendinosis	47
Figure27: MRI appearance of patellar tendon rupture.	48
Figure 28: MRI appearance of Pes anserinus bursitis	49
Figure29: MRI appearance of Pes anserine bursitis	49
Figure 30: MRI appearance of Prepatellar bursitis	50
Figure31: MRI appearance of Hemorrhagic prepatellar	51
bursitis	
Figure 32: MRI appearance of Hemorrhagic deep	52
infrapatellar bursitis	

Figure33: MRI appearance of Mediopatellar plica syndrome	53
Figure34: MRI appearance of Quadriceps tendinosis	54
Figure35: MRI appearance of distal Quadriceps tendon	56
rupture	
Figure36: MRI appearance of Sinding–Larsen–Johansson	58
disease	
Figure37: MRI appearance of Bipartite patella	59
Figure38: MRI image demonstrates how to assess patella	63
Alta depending on Insall -Salvati index	
Figure 39: MRI assessment of Lateral trochlear inclination	65
angle	
Figure 40: MRI assessment of Trochlear facet asymmetry	66
Figure41: MRI assessment of Trochlear depth	66
Figure 42: Demonstrates the percentage of different AKP	68
types among males and females.	
Figure 43: Demonstrates the percentages of the prevalence	69
of different causes of AKP	
Figure44: Demonstrates the percentages of the prevalence	70
of 11 diseases entity found among the patients in	
the study sample	
Figure 45: Demonstrates the percentages of prevalence of	72
the 13 diseases by sex	
Figure 46: Demonstrates the percentage of prevalence of	72
different grades of chondromalacia patella	

Figure 47: Demonstrates percentages of different grades of	73
trochlear dysplasia among the patients with	
patellar instability	
Figure 48: Demonstrates the statistically calculated	74
minimum, maximum, median and mean values of	
trochlear groove depth by (mm), trochlear facet	
asymmetry by (%)and lateral inclination angle	
by(°)	
• ` ` ′	
Figure 49: Case presentation (1)	75
Figure 50: Case presentation (2)	76
Figure 51: Case presentation (3)	77
Figure 52: Case presentation (4)	78
Figure53: Case presentation (5)	79
Figure 54: Case presentation (6)	80
Figure55: Case presentation (7)	82
Figure 56: Case presentation (8)	83
Figure 57: Case presentation (9)	85
Figure58: Case presentation (10)	86
Figure 59: Case presentation (11)	87
Figure 60: Case presentation (12)	88
Figure 61: Case presentation (13)	89
Figure 62: Case presentation (14)	91
Figure63: Case presentation (15)	92
Figure64: Case presentation (16)	93

1- Introduction & Aim of the work

Anterior knee pain (AKP) is the most common knee complaint, usually occurring in adolescents and young adults (Collado and Fredericson 2010).

It is more common in athletic individuals, with the incidence rate as high as 9% in young active adults and comprises up to a quarter of all knee problems treated at sports injury clinics (Witvrouw et al, 2000). AKP may cause chronic disability, limited sports participation, and may affect quality of life. Despite its prevalence, AKP remains poorly understood, as it has not been well studied in the literature, making its treatment one of the most complex among the various pathologies affecting the knee (Biedert and Sanchis-Alfonso, 2002).

Magnetic resonance imaging (MRI) in the recent decades has become the gold standard imaging modality for different knee pathologies as it is safe, and RF pulses used in MRI do not cause ionization.

With MRI, we can obtain direct coronal and oblique image which is impossible with radiography and CT. Particularly useful for the scanning and detection of abnormalities in soft tissue structures like the cartilage tissues, tendons, and ligaments. MRI also can help determine which patients with knee injuries require surgery. MR imaging is recognized as a standard procedure and has replaced diagnostic arthroscopy as the primary diagnostic modality for many knee pathologies. Moreover, MR images can be used to assess anatomic variants that may contribute to chronic patellar instability (Escala et al, 2006).

Aim of the Work

The main objective of our work is to review several of the most common causes of AKP, with emphasis on their MRI findings with the goal of allowing more accurate diagnosis and grading of some of the most common pathologies, for understanding, better treatment and improvement of this common complaint.