

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

CHEMICAL AND ISOTOPIC INVESTIGATION OF GROUNDWATER AQUIFERS IN IDFU REGION ON THE FRINGES OF QENA GOVERNORATE

A THESIS

Submitted in Partial Fulfillment for the Degree of Master of Science in Geology

Ву

Wafaa Fathey Mohammad Abdel Kreem

B. Sc. In Geology

To
Geology Department
Faculty of Science, Cairo University

BUNN

2000

Prof.Dr. Y.IVA. ISS2
Vice Dean For Post Graduate Studies
Faculty Of Science
Cairo University

CHEMICAL AND ISOTOPIC INVESTIGATION OF GROUNDWATER AQUIFERS IN IDFU REGION ON THE FRINGES OF QENA GOVERNORATE

Ву

Wafaa Fathey Mohammad Abdel Kreem

Submitted to

Faculty of Science, Cairo University

Supervision Committe:

Prof. Dr. E.A. Eweida

Professor of Hydrogeology,
Faculty of Science, Cairo University

Prof. Dr. M.S. Hamza

Atomic Energy Authority, Cairo, Egypt.

Prof. Dr. Nahed E. El Arabi

Research Institute for Groundwater

- Reverde M. Hangai Nahed ElAvalor Duch A. The

Prof. Dr. M.A. Takla

Head of Geology Department
Faculty of Science, Cairo University

NOTE

The present thesis is submitted from Wafaa Fathey Mohammad Abdel Kreem to Cairo University in partial fulfillment of requirement for the degree of Master of Science in geology.

Beside the research work materialized in this thesis, the candidate has attended graduate courses for one year in the following topics:

- 1- Structure and Field Geology.
- 2- Advanced Hydrogeology.
- 3- Geophysical Exploration and Water.
- 4- Hydrological Isotope and Water Distillation.
- 5- Computer Science.
- 6- German language.

She has successfully passed the final examination of these courses in October 1993.

Prof. Dr. M.A. Takla

I makes A Table

Head of Geology Department

Faculty of Science, Cairo University

To
My Dear Family
and
My Son

ACKNOWLEDGEMENT

I am deeply thankful to **ALLAH**, by the grace of whom the progress and success of this work was possible.

The author express her gratitude to **Prof. Dr. E.A. Eweida**, Professor of Hydrogeology, Geology Department, Faculty of Science, Cairo University for his great scientific help, valuable guidance and kind supervision.

The candidate is deeply indeped to **Prof. Dr. M.S. Hamza**, Professor of Environmental isotopes & Chemistry, Nuclear Research Center, Egyptian Atomic Energy Authority for supervising the work, continuous valuable suggestion and guidance through this work.

I would like to express my deepest gratitude and sincere thanks to **Prof. Dr. Nahed E. El-Arabi**, Research Institute for Groundwater, for her supervision of this work, continuous help and providing the geological information about the area of study. Also, I would like to express my thanks to all the staff members of the Research Institute for Groundwater for their kind help.

Deep thanks to **Prof. Dr. M.A. Awad**, Professor of Environmental isotopes & Chemistry, National Center for Nuclear Safety and Radiation Control, for his kind cooperation and fruitful discussion and continous interest during the progress of this work.

Special thanks to **Dr. Mohamed A.H. Abdel Aziz**, Leucturer of Applied Geophysics, Environmental and Siting Department, National Center for Nuclear Safety and Radiation Control for his help in processing, analysis and interpretation of the resistivity data.

Thanks are also due to my colleagues for their cooperation and friendship and to every one who had helped in a way or another to make this work possible.

ABSTRACT

Due to the continuous growth of population and the urgent need for food security, expanding the reclamation projects within the unlimited desert of Egypt, has started with the desert fringes of the Nile valley and Delta. In the desert fringes of the study area, Idfu, private reclamation farms has been established since the beginning of the nineties. The groundwater extraction is the only source for irrigation and drinking. The development and the continuous pumping may affect the groundater potential (quantity and quality). Therefore, this study was carried out to define the groundwater aquifer system in the area and the interaction between the shallow and the deep aquifers.

The geophysical survey determined the thickness and the resistivity values of the various formation of the shallow aquifer and the boundaries of this aquifer (base of aquifer), in addition to the geological survey.

The study also defined the sources of groundwater recharge for the Nile aquifer system (Quaternary and Plio-Pleistocene) using the geochemistry and isotopes techniques. Samples are gathered from the different locations representing the concerned aquifer systems (deep and shallow) and the Nile water.

The results of the geochemistry and isotopes analysis confirm mixing between the Nile water and Paleowater from deep aquifer as recharging source of the desert fringes aquifers of Idfu area. The groundwater development projects in this area should follow the national water resources plan and policy to prevent the degradation of groundwater quality due to the over pumping from the aquifer system by the private sector. More investigations such as pumping tests and drilling deep borholes and observation wells for leveling and quality monitoring which are urgently required to assess the available potential and its furture potentiality under different scenarios for groundwater development.

LIST OF CONTENTS

		Page
	CHAPTER 1	
	INTRODUCTION	
1.1	General Background	1
1.2	Objectives and Approach	3
1.3	Scope of the Present Work	6
	CHAPTER 2	
	GENERAL PHYSICAL AND GEOLOGIC SETTING	<u> </u>
2.1	Introduction	. 7
2.2	Physical Setting	7
2.2.1	Site description and Location	7
2.2.2	Climate	9
	1- Rain fall	11
	2- Temperature	11
	3- Evaporation	11
	4- Hydrography	11
2.3	General Geological Setting	12
2.3.1	Geomorphological aspects	12
	1- The young Alluvial plain	12
	2- The old alluvial plain	14
	3- Plateaux	14
2.3.2	Stratigraphical Aspects	15
	1- The Holocene unit	15
	2- The Late Pleistocene	16
	3- The Plio-Pleistocene unit	16
	4- The Pliocene unit	16
	5- The Eocene Carbonate unit	17
	6- The Plaeocene-Upper Cretaceous unit	17
	7- The Upper Cretaceous - Paleozoic Sandstone unit	17
2.4	Structure Aspects:	17
2.5	Land Use	19

CHAPTER 3 ELECTRICAL SURVEY AND HYDROGEOLOGICAL FEATURES

3.1	Introduction	20
3.2	Principles of Resistivity Method	21
3.3	Schlumberger Arrangement	23
3.4	Field data	24
3.5	Qualitative Interpretation of Field Data	26
3.5.1	Profile A.A'	26
3.5.2	Profile B.B'	26
3.5.3	Profile C.C'	26
3.5.4	Profile $D.D'$	30
3.5.5	Profile E.E'	30
3.5.6	Profile F.F'	30
3.5.7	Profile G.G'	30
3.5.8	Profile H.H'	35
3.5.9	Profile I.I'	35
3.6	Quantiative Interpretation of Field Data	35
3.6.1	Results of the Quantitative Interpretation	38
3.6.1.a	Geo-electric cross section along profile A-A	38
3.6.1.b	Geo-electric cross section along profile B-B'	40
3.6.1.c	Geo-electric cross section along profile C-C'	42
3.6.1.d	Geo-electric cross section along profile D-D'	42
3.6.1.e	Geo-electric cross section along profile E-E'	45
3.6.1.f	Geo-electric cross section along profile F-F'	. 47
3.6.1.g	Geo-electric cross section along profile G-G [/]	49
3.6.1.h	Geo-electric cross section along profile H-H [/]	51
3.6.1.i	Geo-electric cross section along profile I-I'	51
3.7	Thickness of Water Bearing Aquifers	54
3.8	Hydrogeology	54
3.8.1.	Quaternary Aquifer System	56
3.8.2	Plio-Pleistocene Aquifer System	57
3.8.3	Nubian Sandstone Aquifer Sysem	57
3.9	Groundwater Flow and Fluxes	58
3.10	Conclusion	60

CHAPTER 4 GROUNDWATER HYDROCHEMISTRY

	· · · · · · · · · · · · · · · · · · ·	
4.1	Introduction	62
4.2	Origin and Significance of the Major Elements in Nature water-	- 63
4.2.a	Chloride Cl ⁻	63
4.2.b	Bicarbonate (HCO3)	64
4.2.c	Sulphate (SO ₃ ² -)	65
4.2.d	Sodium (Na ⁺)	66
4.2.e	Potassium (K ⁺)	66
4.2.f	Calcium and Magnesium (Ca ²⁺ & Mg ²⁺)	67
4.3	Hydrochemical Aspects	67
4.3.1	Major Ion Distribution	74
4.3.1.a	Distribution of Calcium	74
4.3.1.b	Distribution of Magnesium	75
4.3.1.c	Distribution Sodium and postassium	76
4.3.1.d	Distribution of bicarbonate	78
4.3.1.e	Distribution of Sulphate	80
4.3.1f	Distribution of Chloride	82
4.3.2	Total salinity distribution	85
4.3.2.a	Total salinity distribution of Quaternary aquifer	86
4.3.2.b	Total salinity distribution of Plio-Pleistocene aquifer	86
4.3.2.c	Total salinity distribution of Nubian sandstone aquifer	87
4.3.2.d	Total salinity distribution of surface water	87
4.3.3	Ionic Relationship	87
4.3.3.a	Chemical ion sequences in the Quaternary aquifer	89
4.3.3.b	Chemical ion sequences in the Plio-Pleistocene aquifer	89
4.3.3.c	Chemical ion sequence in the fresh water	90
4.3.4	The hypothetical salt assemblages	90
4.3.4.a	Quaternary aquifer	90
4.3.4.b	Plio-Pleistocene aquifer	91
1.4.	Geochemical representation of groundwater	92
1. 4.1	Piper's classification	93
1.4.2	Sulin's classification	95
1.45	Sources of salinity	97
1.4.6	Evaluation of water Quality for Different purposes	99
1.4.6.1	Evaluation for Drinking and Domestic Usage	100
.4.6.2	Facility C. T. J. 177	102

4.4.6.3	Suitability of Water for Agricultural Uses	104
4.4.6.3	1- The total concentration of soluble salts (TDS)	105
	2- The relative proportion of sodium to other cations	106
	3- According to Sodium Adsorption Ratio (SAR)	107
4.7	Conclusions	110
	CHAPTER 5	
	ENVIRONMENTAL ISOTOPIC STUDIES	
~ 1	Environmental Isotopes in the hydrological cycle	111
5.1	Environmental Isotopes Applications	111
5.2	Stable Isotopes	113
5.3	Analysis Technique for Oxygen-18	117
5.3.1	Analysis Technique for Deuterium	117
5.3.2	Environmental Isotopes of investigated groundwater in the	
5.4	study area.	118
5.5	Conclusion	122
	Summary and Recommendations	125
	References	133
	Arabic Summary	1

J