Study of Homocysteine Level in Patients with Diabetes Mellitus Type 2

THESIS

Submitted for the partial fulfillment of MD degree in Internal Medicine

$\mathbf{B}\mathbf{y}$

Hend Abdullah Mohamed

Assistant lecturer of Internal medicine, Cairo University

Supervised By

Dr. Rawia Ahmad Khater

Professor of Internal Medicine Faculty of medicine Cairo University

Dr. Yasser Bakr Mohamed

Assistant Professor of Internal Medicine Faculty of medicine Cairo University

Dr. Dawlat Salem

Professor of Biochemistry Faculty of medicine Cairo University

بسم الله الرحمن الرحيم

"وقل رب زدني علما"

صدق الله العظيم (سورة طه، الآية ١١٤)

<u>ACKNOWLEDGEMENT</u>

First, and foremost, all thanks and gratitude to GOD, most gracious and most merciful.

I would like to express my deepest gratitude and sincere thanks to Prof. Dr. Rawia Khater, Professor of Internal medicine, Cairo University, for her continuous guidance, encouragement, meticulous supervision and valuable advice for enriching this work.

I am extremely grateful to Prof. Dr. Yasser Bakr, Professor of Internal medicine, Cairo University, for his continuous guidance and suggestions, saving no effort or time to make this work better.

I would like to express my highest appreciation to Prof. Dr. Dawlat Salem, Professor of biochemistry, Cairo University, for her great cooperation, assistance and efforts during the whole work.

Abstract:

Homocysteine (Hcy) is an independent risk factor for cardiovascular disease, which is the leading cause of morbidity and mortality among Type 2 Diabetes Mellitus (T2DM) patients. 60 T2DM patients and 20 apparently healthy volunteers were included as controls in this study. Hcy was significantly higher in patients versus controls (p<0.·01), Hcy was also higher in patients with vascular complications compared to those without complications, (p<0.·01). There was a highly significant positive correlation between Hcy and the duration of Diabetes, blood pressure, the dose of metformin, glycated hemoglobin, total cholesterol, low-density lipoprotein cholesterol, Triglycerides and a negative highly significant correlation with high-density lipoprotein cholesterol. In diabetic patients with vascular complications, there was a highly significant correlation between fasting total homocysteine and both ischemic heart disease and urinary albumin to creatinine ratio, (p<0.·01).

Key Words:

- Homocysteine.
- Type 2 Diabetes.
- Vascular complications.

List of Contents

List of Figures	V
List of Tables	VI
List of Abbreviations	VII
Introduction and Aim of the StudyX	
Review of literature	
Chapter 1:	
Type 2 Diabete Mellitus	1
-Background	1
-Epidemiology	2
-Pathogenesis of Type Diabetes	7
Genetic and environmental factors	9
Molecular mechanisms	15
-Diagnosis of Type 2 Diabetes Mellitus	22
-Diagnosis of Prediabetes	27
-Prevention of Type 2 Diabetes Mellitus	30
Chapter 2:	
Vascular Complications of Diabetes Mellitus	37
-Background and Epidemiology	37

-Pathogenesis of Vascular Complications	39
-Glycemic (Metabolic) Memory	42
-Micro-Vascular Complications	45
Diabetic Retinopathy	45
Diabetic Nephropathy	54
Diabetic Neuropathy	65
-Macro-Vascular Complications	72
Atherosclerosis	74
Hypertension	75
Dyslipidemia	78
Cardiovascular Disease	81
Stroke	85
Diabetic Foot	86
Homocysteine and Hyperhomocysteinemia	91
-Homocysteine Metabolism	92
-Homocysteine & Drugs	96
-Hyperhomocysteinemia	98
-Pathogenesis of vascular disease	
in Hyperhomocysteinemia	102
-Hyperhomocysteinemia and	
Cardiovascular Disease	105
-Hyperhomocysteinemia and Ischemic Stroke	107

-Hyperhomocysteinemia and
Chronic Kidney Disease109
-Hyperhomocysteinemia and
Gastrointestinal Disorders111
-Hyperhomocysteinemia and Osteopoeosis112
-Hyperhomocysteinemia and
Neurodegenerative Disorders115
-Hyperhomocysteinemia and Behcet's Disease121
-Effect of Lowering Homocysteine Levels122
Chapter 4:
Hyperhomocysteinemia and Type 2 Diabetes129
-Homocysteine Metabolism in Diabetes133
-Cardiovascular Disease136
-Peripheral Arterial Disease137
-Diabetic Retinopathy137
-Diabetic Neuropathy138
-Diabetic Nephropathy138
-Hyperhomocysteinemia and
the Risk of Type 2 Diabetes140

Materials and Methods	142
Results	157
Discussion	189
Summary	207
References	210

List of Figures

Number	Title	Page
1	Pathophysiological Alterations Leading to Hyperglycemia in Type 2 Diabetes and Specific Types of Treatment.	8
2	Screening and initial management of Diabetic foot.	89
3	Homocysteine metabolism.	95
4	Homocysteine Calibration Curve.	150
5	Comparison between DM without Complication (group 1) and DM with Complication (group 2) Regarding type of Treatment.	169
6	Comparison between the Studied Groups as Regards HbA1c.	174
7	Comparison between the 3 Study Groups as Regards Fasting total Homocysteine (tHcy).	179
8	Comparison between the 3 Study Groups as Regards, total Cholesterol (CHOL), Low-Density Lipoproteins (LDL) Cholesterol, High-Density Lipoproteins (HDL) Cholesterol, Triglycerides(TG).	179
9	Correlation between Fasting total Homocysteine (tHcy) and Duration of Diabetes in the Diabetic Patients Included in the Study (Group I & II).	184
10	Correlation between fasting total Homocysteine (tHcy) and High Density Lipoproteins (HDL) cholesterol in Diabetic Patients (group I &II).	185
11	Correlation between Fasting total Homocysteine (tHcy) and Albumin Creatinine Ratio (ACR) in Diabetic Patients (group I &II).	185
12	Correlation between Fasting total Homocysteine (tHcy) and HbA1c in Diabetic Patients (group I & II).	186

List of Tables

Number	Title	Page
1	Criteria for diagnosis of Diabetes.	24
2	Advantages and Disadvantages of Screening Tests for Diabetes.	26
3	Major Diagnostic Criteria for Diabetes and Prediabetic or at Risk States.	29
4	Indications for screening of Type 2 Diabetes in asymptomatic adults.	31
5	Indications for screening of Type 2 Diabetes in asymptomatic Children (Persons aged ≤18 years).	32
6	The revised international classification for diabetic retinopathy and macular edema.	49
7	Chronic kidney disease stages.	62
8	Causes of Hyperhomocysteinemia.	101
9	The Descriptive Data of Group I (Diabetic Patients with no Vascular Complications).	158
10	The Descriptive Data of Group II (Diabetic Patients with Vascular Complications).	161
11	The Descriptive Data of Group III (Control).	164
12	Comparison between the Studied Groups Regarding General Data.	168
13	Comparison between DM without Complication (group 1) and DM with Complication (group 2) Regarding type of Treatment.	169
14	Comparison between DM without Complication (group 1) and DM with Complication (group 2) Regarding Metformin Administration and Dosage.	170
15	Comparison between Diabetic Patients (Group I & II) and Controls as Regards Biochemical Data.	172
16	Comparison between the 3 Study Groups as Regards Biochemical Data.	173
17	Comparison between Diabetic Patients (Group I & II) and Controls as Regards Fasting total Homocysteine (tHcy), Cholesterol (CHOL),	177

	Low-Density Lipoproteins (LDL) Cholesterol, High-Density Lipoproteins (HDL) Cholesterol, Triglycerides (TG) and Albumin Creatinin Ratio (ACR).	
18	Comparison between the 3 Study Groups as Regards Fasting Total Homocysteine (tHcy), Cholesterol (CHOL), Low-Density Lipoproteins (LDL) Cholesterol, High-Density Lipoproteins (HDL) Cholesterol, Triglycerides(TG) and Albumin Creatinin Ratio (ACR).	178
19	Correlation between Fasting total Homocysteine (tHcy) and Presence of Complications in Diabetic Patients with Vascular Complications (Group II).	180
20	Correlation between Fasting total Homocysteine (tHcy) and other Variables in the Diabetic Patients included in the Study (Group I & II).	183
21	The Association between Metformin Intake and Fasting total Homocysteine (tHcy) in the Diabetic Patients Included in the Study (Group I & II).	184
22	Correlation between Fasting total Homocysteine (tHcy) and other Variables in Diabetic Patients without Complications (group I).	187
23	Correlation between Fasting total Homocysteine (tHcy) and other Variables in Diabetic Patients with Vascular Complications (group II).	188

List of Abbreviations

ABCA1	ATP-Binding Cassette, sub-family A, member 1.
ACCORD	Action to Control Cardiovascular Risk in Diabetes.
ACEI	Angiotensin Converting Enzyme Inhibitor.
ACR	Albumin Creatinine Ratio.
AD	Alzheimer's Disease.
ADA	American Diabetes Association.
ADMA	Asymmetric Di-Methyl Arginine.
ADT	Anethole Dithiole-Thione.
ADVANCE	Action in Diabetes and Vascular Disease.
AGEs	Advanced Glycation End Products.
ANOVA	Analysis of Variance.
ARB	Angiotensin Receptor Blocker.
BHMT	Betaine-Homocysteine S-Methyl-Transferase.
ВМІ	Body Mass Index.
CAD	Coronary Artery Disease.
CBS	Cystathionine-B-Synthase.
CGL	Cystathionine γ-Lyase.
CKD	Chronic Kidney Disease.
CVD	Cardio Vascular Disease.
DCCT	Diabetes Control and Complications Trial.
DD	Disc Diameter.
DM	Diabetes Mellitus.
DMG	Di-Methyl-Glycine.
DMO	Diabetic Macular Edema.
DN	Diabetic Nephropathy.
DNA	Deoxyribo-Nucleic Acid.
DPP	Diabetes Prevention Program.
DR	Diabetic Retinopathy.
EDIC	Observational Epidemiology of Diabetes
	Interventions and Complications.
EDTA	Ethylene Diamine Tetra-acetic Acid.
ESRD	End Stage Renal Disease.
FFA	Free Fatty Acids.
FPG	Fasting Plasma Glucose.
GABA	γ-Amino-Butyric Acid.
GFR	Glomerular Filtration Rate.
Нсу	Homocysteine.
HDL	High-Density Lipoprotein.
ННсу	Hyper-Homocysteinemia.

IFG	Impaired Fasting Glucose.
IGT	Impaired Glucose Tolerance.
IHD	Ischemic Heart Disease.
LDL	Low-Density Lipoprotein.
MS	Multiple Sclerosis.
MTHFR	Methylene –Tetra- Hydro- Folate- Reductase.
MTs	Methyl-Transferases.
NGSP	National Glycohemoglobin Standardization
	Program.
NPDR	Non-Proliferative Diabetic Retinopathy.
OGGT	Oral Glucose Tolerance Test.
PD	Parkinson's Disease.
PDR	Proliferative Diabetic Retinopathy.
RAGE	Receptor for Advanced Glycation End
	Products.
RRMS	Relapsing Remitting Multiple Sclerosis.
SAH	S-Adenosyl Homocysteine.
SAM	S-Adenosyl Methionine.
SHMT	Serine Hydroxy Methyl Transferase.
T1DM	Type 1 Diabetes Mellitus.
T2DM	Type 2 Diabetes Mellitus.
THF	Tetra-Hydro-Folate.
UKPDS	United Kingdom Prospective Diabetes Study.
VADT	Veterans Affairs Diabetes Trial.
VEGF	Vascular Endothelial Growth Factor.
VLDL	Very Low Density Lipoprotein.

INTRODUCTION

Background:

Diabetes mellitus is a major epidemic of this century, which has increased in incidence by 50% over the past 10 years (Forbes and Cooper, 2013) and Type 2 Diabetes mellitus (T2DM) accounts for ~90–95% of diabetic patients (American Diabetes Association, 2015).

The magnitude of the global health burden of diabetes is well documented and complications of diabetes are the cause of the vast majority of this burden, it also account for substantial costs (**Tin et al 2014**).

Macrovascular complications are the largest contributor to the direct and indirect costs of diabetes. Cardiovascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus and cardiovascular disease risk is 2- to 8-fold higher in the diabetic population than it is in non-diabetic individuals of a similar age, sex and ethnicity (Papa et al, 2013).

As obesity, hypertension and dyslipidemia, which are known to be frequently associated with type 2 diabetes, are insufficient in explaining the increase in risk of cardiovascular disease; researchers are focusing on investigating other risk factors (Kangabam et al, 2013).

Homocysteine

Homocysteine (Hcy), a sulphur containing amino acid produced during the metabolism of methionine (Kangabam et al 2013), is an independent cardiovascular risk factor. An association between elevated levels of Hcy and the vascular complications of diabetes has been reported. However; studies on circulating Hcy levels in Type 2 Diabetes (T2DM) have given conflicting results (Huang et al, 2013).

The risk of cardiovascular disease and for mortality attributed to Hyperhomocysteinemia (HHcy) is stronger in patients with type 2 diabetes than in subjects without diabetes (Jung et al, 2013). HHcy is also associated with atherosclerosis, and this association is stronger in individuals with diabetes than in nondiabetic subjects (Mohammed et al, 2013).