

Harmonic Resonance Assessment and Severity Estimation of Shunt Capacitor Applications in Electric Power Distribution Systems

By

Shamel Hassan Mahmoud Hamouda

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Harmonic Resonance Assessment and Severity Estimation of Shunt Capacitor Applications in Electric Power Distribution Systems

By

Shamel Hassan Mahmoud Hamouda

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electrical Power and Machines Engineering

Under supervision of

Associate Prof. Ahmed Mohamed Ibrahim

Electrical Power and Machines Department
Faculty of Engineering,
Cairo University

Harmonic Resonance Assessment and Severity Estimation of Shunt Capacitor Applications in Electric Power Distribution Systems

By

Shamel Hassan Mahmoud Hamouda

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee

Assoc. Prof. Dr. Ahmed Mohamed Ibrahim,

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Prof. Dr. Essam Eldien Mohamed Abo El Zahab,

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Abd El Fattah Mohamed Farahat,

Electrical Power and Machines Department Faculty of Engineering, Zagazig University

Thesis Main Advisor

Internal Examiner

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer's Name: Shamel Hassan Mahmoud Hamouda

Date of Birth: 07/10/1969
Nationality: Egyptian

E-mail: shamelhassan@yahoo.com

Phone: 01066426211

Address: 127 Abd Al-Aziz Al-Soud Al-Manial Cairo Egypt

Registration Date: 01/10 /2014

Awarding Date: Y.YA

Degree: Master of Science

Department: Electric Power and Machines Engineering

Supervisor: Associate Prof. Dr. Ahmed Mohamed Ibrahim

Examiners:

Assoc. Prof. Dr. Ahmed Mohamed Ibrahim,

Thesis Main Advisor

Electrical Power and Machines Department-Faculty of Engineering, Cairo University

Prof. Dr. Essam Eldien Mohamed Abo El Zahab,

Internal Examiner

Electrical Power and Machines Department-Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Abd El Fattah Mohamed Farahat,

External Examiner

Electrical Power and Machines Department-Faculty of Engineering, Zagazig University

Title of Thesis:

Harmonic Resonance Assessment and Severity Estimation of Shunt Capacitor Applications in Electric Power Distribution Systems

Keywords:

Harmonic distortion, power quality, power factor correction, resonance severity, shunt capacitors

Summary:

The technological development in the semiconductor field facilitates the increase of nonlinear loads, that may affect the power quality of distribution power system network and harmonic may occur. Accordingly, shunt capacitors are widely used for harmonic mitigation, but harmonic resonance may occur between the system and the connected capacitors and may have severe consequences.

In this thesis, a procedure to estimate the severity of harmonic resonance is formulated in electrical power distributed system, and a harmonic resonance index is proposed for shunt power capacitor application used to improve power factor. A simple equation to express harmonic resonance severity under different background harmonic voltage levels is formulated. Different case studies are employed to analyze the possibility and severity of harmonic resonance using the proposed formulations with various utility side's background voltage distortions. The results show that the proposed resonance index formulation can facilitate quick use by industry to estimate the severity of resonance.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Ahmed Mohamed Ibrahim for the continuous support of my M.Sc. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.Sc. study.

Besides my examiner and advisor, I would like to thank Dr. Shady Abd Al Aleem, for his insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives.

TABLE OF CONTENTS

Acknowledgments	Page i
-	••
Table of Contents	ii
List of Tables	V
List of Figures	vi
List of Abbreviations	viii
List of Symbols	ix
List of Publications	xi
Abstract	xii
Chapter (1): Introduction	1
1.1 Background	1
1.2 Research gap	2
1.3 Motivation	۲
1.4 Research aims & objectives	٣
1.5 Outlines of the thesis	٣
Chapter (2): Power System Harmonics	٤
2.1 Power quality (PQ)	٤
2.2 Power quality disturbances	٦
2.3 Power system harmonics	٦
2.3.1 Definitions	٦
2.3.2 Harmonics sources	٨
2.3.3 Harmonics Effects	1.
2.3.4 Harmonic resonance	11
2.3.5 Harmonics indices	1۳
2.3.5.1 Total harmonic distortion (THD)	1 ٤
2.3.5.2 Total demand distortion (TDD)	١,۶

	2.3.6 Standards on the harmonic distortion	١٤
	2.3.6.1 IEC European Standards	10
	2.3.6.2 IEEE Standard 519	١٦
	2.4 Harmonics mitigation	١٧
	2.4.1 Filtering of harmonics	١٧
	2.4.1.1 Passive filters	١٨
	2.4.1.2 Active filters	19
	2.5 Harmonic filters location	77
	2.6 Harmonic assessment with connected PFC capacitors	77
C	hapter (3): Harmonic Resonance Index	70
	3.1 Resonance indexing background	70
	3.2 Resonance indexing concept	77
	3.3 Harmonic resonance index and severity	78
	3.4 Harmonic resonance index results	٣١
	3.5 Generalization of harmonic resonance index calculations	٣4
	3.5.1 Nonlinear data-fitting	٣4
	3.5.2 Generalized representation of <i>HRI</i> _{Limit}	٣٦
	3.6 Summary	٣٦
C	hapter (4): Results and Discussions	٣٧
	4.1 Case study concept	84
	4.2 Case study 1: transmission system	87
	4.2.1 No voltage distortion data: scenario 1	87
	4.2.2 Voltage distortion data are available: scenario 2	89
	4.3 Case study 2: distribution system	٤.
	4.4 Case study 3: industrial system	٤٤
	4.4.1 Conventional method	٤٥
	4.4.2 Using harmonic resonance method	٤٧
	15 Feanomia considerations	0.

Chapter (5): Conclusions and Future Works	
5.1 conclusion	٥٦
5.2 Future works	٥٦
Appendix 1: Solving for harmonics limit in Table 3.2 (mathmatica program)	٥٧
Appendix 2: Solving for harmonics limit in Table 3.3 (mathmatica program)	٦١
Appendix 3: Solving for harmonics limit in Table 3.4 (mathmatica program)	٦٥
Appendix 4: Solving for harmonics limit in Table 3.5 (mathmatica program)	٦٩
Appendix 5: using nonlinear data-fitting provided by MATLAB optimization toolboxes for polynomial that best fits the data value in table 3.5 Appendix 6: Solving for harmonics limit in Table 3.2 (proposed equation)	٧٣ ٧٥
Appendix 7: Solving for harmonics limit in Table 3.3 (proposed equation)	Y Y
Appendix 8: Solving for harmonics limit in Table 3.4 (proposed equation)	٧٩
Appendix 9: Solving for harmonics limit in Table 3.5 (proposed equation)	٨١
Appendix 10: case 1: scenario 1: solving for value presented in Table 4.2	٨٣
Appendix 11: Solving for case 1: scenario 1 (using MATLAB)	٨٤
Appendix 12: Solving case 1: scenario 2 (using MATLAB)	٨٦
Appendix 13: Solving case 3 (using MATLAB)	٨٨
References	٩.

LIST OF TABLES

	Page
Table 2.1: PQ definitions based on different perspectives	5
Table 2.2: PQ standard disturbances with definitions	7
Table 2.3: The four classes of equipment given in standard EN 61000-3-2	15
Table 2.4: Harmonic limits for the four classes of equipment given in standard EN 61000-3-2	15
Table 2.5: Harmonic voltage distortion limits	16
Table 2.6: Harmonic current distortion limits	16
Table 3.1: Harmonic voltage distortion limits based on IEEE 519	31
Table 3.2: HRI _{limit} with a voltage level less than 1 kV: VIHD equals 5.0%	31
Table 3.3: <i>HRI</i> _{limit} with a voltage level greater than 1 kV and less than 69 kV: <i>VIHD</i> equals 3.0%	32
Table 3.4: <i>HRI</i> _{limit} with a voltage level greater than 69 kV and less than 161 kV: <i>VIHD</i> equals 1.5%	32
Table 3.5: <i>HRI</i> _{limit} with a voltage level greater than 161 kV: <i>VIHD</i> equals 1.0%.	32
Table 4.1: Harmonic measures of the system used in [5]: Case 1	37
Table 4.2: Harmonic resonance index: Case 1	38
Table 4.3: VIHD values: Case 1, Scenario 2	39
Table 4.4: System data and harmonic measures	40
Table 4.5: Harmonic resonance index calculations	41
Table 4.6: Harmonic resonance index: Case 3	47
Table 4.7: Data of the IEEE benchmark system	53
Table 4.8: Data of the IEEE benchmark system	54

LIST OF FIGURES

		Page
Figure 2.1	Determination of the causes of PQ disturbances; (a) Utility perception;(b) Customer perception	4
Figure 2.2	The common PQ problems	6
Figure 2.3	Fourier series representation of a distorted waveform	8
Figure 2.4	Linear and nonlinear loads	9
Figure 2.5	Some prevailing harmonic sources connected in a system	10
Figure 2.6	Effects of harmonics on the different sectors of an electrical system	11
Figure 2.7	Example of the physical damages for capacitor banks caused by harmonic resonance	12
Figure 2.8	Demonstration of series and parallel resonance	13
Figure 2.9	Basic ways of connection of harmonic filters at the PCC	17
Figure 2.10	The common shunt passive filter configurations. (a) first order, high-pass (b) second order, high-pass (c) third order, high-pass (d) <i>C</i> -type, and (e) the single-tuned filter	18
Figure 2.11	Frequency response of the common shunt passive filter configurations	18
Figure 2.12	Active filter basic configurations: (a) Shunt active filter, (b) Series active filter	19
Figure 2.13	Hybrid series-active shunt-passive filter configuration	20
Figure 2.14	Samples of the different harmonic solutions that exist in the PQ markets	21
Figure 2.15	Single-phase equivalent circuit of a typical distribution system	22
Figure 2.16	Current-frequency scans with the presence of PFC capacitors and adjustable speed drives (ASDs)	24
Figure 3.1	The typical industrial system, (a) one-line diagram, and (b)	26
Figure 3.2	Thevenin equivalent circuit (without the loads)	28
Figure 3.3	Resonance charts with different VIHD values based on IEEE Std. 519-2014 and IEEE Std. 18-2012	33

Figure 3.4	The calculated and estimated HRI _{Limit} values	35
Figure 3.5	The calculated goodness-of-fit indices	35
Figure 4.1	The typical transmission system	37
Figure 4.2	Resonance evaluation for Case 1: Scenario 1	38
Figure 4.3	Resonance evaluation for Case 1: Scenario 2	39
Figure 4.4	Resonance evaluation for Case 2: Scenario 1	42
Figure 4.5	Resonance evaluation for Case 2: Scenario 2	43
Figure 4.6	The system presented	44
Figure 4.7	Resonance evaluation for Case 3: <i>Q</i> =200 KVAr	48
Figure 4.8	Resonance evaluation for Case 3: <i>Q</i> =400 KVAr	48
Figure 4.9	Resonance evaluation for Case 3: <i>Q</i> =600 KVAr	49
Figure 4.10	Resonance evaluation for Case 3: <i>Q</i> =800 KVAr	49
Figure 4.11	Resonance evaluation for Case 3: <i>Q</i> =1000 KVAr	50
Figure 4.12	Single-phase equivalent circuit of the IEEE benchmark system	51
Figure 4.13	Resonance evaluation for the IEEE benchmark system	55

LIST OF ABBREVIATIONS

AEB Annual electricity bill

ASDs Adjustable Speed Drives

CSI Current Source Inverter

DG Distributed Generation

DPF Displacement Power Factor

HMT Harmonic Mitigating Transformer

HRI Harmonic resonance index

HVDC High voltage direct current

ITHD Current total harmonic distortion

NB New annual electricity Bill

OB Old annual electricity Bill

PCC Point of Common Coupling

PFC Power Factor Correction

PLC Programmable Logic Controllers

PQ Power Quality

rms root-mean-square

SCL Short-Circuit Level

TDD Total Demand Distortion

THD Total Harmonic Distortion

UPSs Uninterruptible Power Supplies

VFDs Variable Frequency Drives

VIHD Voltage Individual Harmonic Distortion

VSI Voltage Source Inverter

VTHD Voltage total harmonic distortion

LIST OF SYMBOLS

 $E(HRI_{Limit})$ Expected HRI_{Limit} value

 $E_{consumed}$ Total annual energy consumed in kilowatt hour

 $f(\alpha_i, n)$ Nonlinear data-fitting function

 f_t Parallel-resonant frequency in hertz

h Harmonic order

HRI_{limit} Minimum threshold value of harmonic resonance index

HR_{Sev} Severity of harmonic resonance

*I*₁ Fundamental harmonic current component

I_C Rated rms value of the capacitor current

I_{C1} Capacitor current

 I_{Ch} The *h*th components of the capacitor current

 I_h The hth harmonic current component

*I*_L Load current maximum demand

I_{rated} Rated values of the current

 I_{SC}/I_L Short-circuit current to the load current

 I_{Sh} Supply current

 k_h Percentage of distortion

KVAr_{cap} Nominal reactive power of the capacitor in kVA

 kVA_{tr} Transformer rating in kVA

 kV_{cap} Capacitor rated voltage in kilovolts

 kV_{LL} System voltage (line-to-line) in kilovolts

 M_h The rms value of the harmonic component at harmonic order h of the

quantity M

MVA_{SC} The short-circuit capacity of the system in MVA

n Total number of harmonic orders

 P_{demand} Contracted demand power in kilowatts

 Δ Ploss Transmission power loss

Q_C Reactive power of capacitor

*Q*_{rated} Capacitor's rated values of reactive power

 R_{Sh} The hth Thevenin resistance of the source

 R_{sys} System equivalent resistance in ohms

 R_{tot} Total resistance in ohms

 R_{tr} Transformer equivalent resistance in ohms

 U_C Unit cost of the capacitor in Egyptian pounds per kilovar

(L.E./KVAr)

 V_1 Fundamental harmonic voltage component

V_C Rated rms value of the capacitor voltage

V_{C1} Capacitor voltage

 V_{Ch} The *h*th components of the capacitor voltage

V_{CP} Capacitor's peak voltage

 V_h The hth harmonic voltage component

 V_{Lh} The hth harmonic load voltage

 $V_{peak, rated}$ Peak value of the rated capacitor voltage

*V*_{rated} Capacitor's rated values of voltage

 V_{Sh} Thevenin open-circuit voltage

 ω Angular frequency at any frequency (radian per seconds)

 ω_t Parallel-resonant angular frequency at the tuning frequency (radian

per seconds)

X/R Reactance to resistance ratio

 X_C Capacitive reactance in ohms

 X_{Sh} The hth Thevenin reactance of the source

 X_{sys} System equivalent reactance in ohms

 X_{tot} Total reactance in ohms

 X_{tr} Transformer equivalent reactance in ohms

 Y_{th} The hth harmonic admittance

Z_{Ch} Capacitor impedance

 Z_p Parallel resonance impedance in ohms

 Z_{Sh} The hth impedance of the Thevenin source

 Z_{th} Total harmonic impedance

 \emptyset_1 Fundamental angle value between V_{Lh} and I_{Sh}

 \emptyset_h The hth harmonic phase angle between V_{Lh} and I_{Sh}

α Turns ratio of the transformer at the PCC

 α_i Coefficients that best fit, *i* counter that has a starting value of 1

LIST OF PUBLICATIONS

Shamel H. Hamouda, Shady H. E. A. Aleem and Ahmed M. Ibrahim, "Harmonic Resonance Index and Resonance Severity Estimation for Shunt Capacitor Applications in Industrial Power Systems," 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Menoufia University, Egypt, December 19-21, 2017, Cairo, Egypt.