

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

COTTONSEED DELINTING BY FLASH SURFACE BURNING TECHNIQUE

A Thesis

Presented to the Graduate School Faculty of Agriculture, Alexandria University in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Engineering

by

Hussien Ahmed Ahmed Elsoury

B

2001

COTTONSEED DELINTING BY FLASH SURFACE BURNING TECHNIQUE

Presented by **Hussien Ahmed Ahmed Elsoury**

For the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Engineering

Examiners' Committee:

Dr. Ahmed Farid El-Sahrigi Professor of Agricultural Engineering Ain Shams University

Dr. Zakaria Abdel-Rahman. EL-Hadad Professor of Agricultural Engineering Zagazeeg University

Dr. Mohamed Ahmed Sabbah Professor of Agricultural Engineering Alexandria University

Dr. Soliman Nassif Soliman Professor of Agricultural Engineering Alexandria University **Approved**

El-Gudll

Solman

Date: 25 / 10 / 2001

Advisors' Committee:

Dr. Mohamed Ahmed Sabbah
Professor of Agricultural Engineering, Alexandria University
and Director of Desert Development Center, American
University, Cairo.

Dr. Soliman Nassif Soliman
Professor of Agricultural Engineering, Alexandria University

Dr. Mona Mahmoud Naeem
Professor of Chemical Engineering, Alexandria University.

DEDICATED

TO

My Parents,
My Brothers & Sisters
My Wife,
My Daughter

FARAH
And My Son

FADI

ACKNOWLEDGMENT

The author is greatly indebted to Prof. Dr. Mohamed Ahmed Sabbah, Professor of Agricultural Engineering and Director of Desert Development Center, at the American University in Cairo for his valuable guidance, suggestions and discussions during this study and continuous encouragement.

The author is deeply grateful to Prof. Dr. Soliman Nassif Soliman, Professor of Agricultural Engineering, for his excellent supervision, generous effort and friendship that enabled the author to undertake this study.

The author is deeply grateful to Prof. Dr. Mona M. Naeem, Professor of Chemical Engineering, Faculty of Engineering, Alexandria University for her valuable assistance.

Thanks and sincere gratitude are due to Prof. Dr. Saad F. Ahmed Professor and head of Agricultural Engineering Department, for his valuable assistance and continuous encouragement.

Special thanks to all members of the Agricultural Engineering Department for their help and encouragement.

Special thanks and sincere gratitude are due to Prof. Dr. Azmi El-Beri, Director of the Agricultural Engineering Research Institute, for his valuable assistance, continuous encouragement and financial support of this research.

Thanks and sincere gratitude are due to Dr. Anwar Nada and all members of Agricultual Engineering Research Institute, in Sabbahia, Alexandria, for their help and encouragement.

ABSTRACT

Hussien Ahmed Ahmed Elsoury

Dept. of Agricultural Engineering Faculty of Agriculture, Alexandria University

COTTONSEED DELINTING BY FLASH SURFACE BURNING TECHNIQUE.

Advisors' Committee : Prof. Dr. M. A. Sabbah, Prof. Dr. S. N. Soliman And Prof. Dr. M. M. Naeem

The presence of short lint (fuzz) on cottonseed surface causes many problems in seed preparation, handling, storing, processing and planting. This fuzz causes particular losses in several fields when cottonseed is used.

The main objectives of the present work was to design, and construct a flash surface burning (FSB) system using thermal effect.

In order to reach this objective, the factors affecting the thermal delinting were studied; such as the effect of flue gas temperature, cottonseed flow rate, reactor height and cooling method on the quality of the delinted seed under laboratory conditions for Egyptian cottonseed variety (Giza 70).

The model solution of the best alternative reactor design parameters and seed flow rate which achieve the recommended limiting factors, revealed that 773 $^{\circ}$ K flue gas temperature, 3 m reactor

height, 6 cm reactor diameter and 20 Kg/hr cottonseed flow rate as the best suitable model solution.

The FSB system was designed and constructed of four basic units: feeding unit, scattering unit, thermal reactor unit, and measuring and controlling unit of cottonseed falling time. Each unit was tested, calibrated and adjusted to acheive its operational function.

The operational parameters of the system (cottonseed flow rate, flue gas temperature, reactor height and cooling method) were studied in order to obtain the best operational conditions for the Egyptian long stable cottonseed variety (Giza 70). Ninety treatments with three replicates were conducted.

A linear regression analysis was applied to obtain the quality criteria as a function of the operational parameters.

The optimum operational treatment was obtained at 873 °K flue gas temperature, 3 m reactor height and 10 Kg/hr cottonseed flow rate with natural air cooling method as the optimum treatment.

This system has an important application in the field of cottonseed production and preparation.

TABLE OF CONTENTS

	Page
* ABSTRACT	·
* ACKNOWLEDGMENT	
*TABLE OF CONTENTS	I
* LIST OF TABLES	VI .
* LIST OF FIGURES	\mathbf{X}_{-}
* LIST OF SYMBOLS AND UNITS	XV
I INTRODUCTION	1
II REVIEW OF LITERATURE	3
III- THEORETICAL APPROACH	23
1- Theoretical Background	23
1.1- Air Combustion	23
1.2- Gas Fuel	24
1.2.1. Compressed Gases	24
1.2.2. Liquefied hydrocarbon fuel gas1.3- Thermal effects in combustion	24 25
1.4- Ignition temperature	28
1.5- Flame	28
1.5.1 Inflammability	29
1.5.2 Flame speed and its effect on burners	29
1.5.3 Flame temperature	30
1.5.3.1 Calorific value of gas fuel	30
1.5.3.2 Heat capacity of flue gas.	30
1.5.3.3 Excess air in flue gas	30
1.5.3.4 Dissociation.	32
1.5.3.5 Radiation from flame	32

1.6- Thermodynamics of the CPB gas fuel.	33
1.6.1 The mathematical representation of Gibbs-Dalton	34
1.6.1.1 Gibbs-Dalton law implications in combustion analysis.	37
1.7- Combustion analysis of CPB.	38
1.8-The basic requirements for complete combustion	40
1.8.1 The air supply	41
1.8.2 Air mixing	41
1.8.3 Gas draft	43
1.8.3.1 Calculation₊of natural draft	44
1.9- Flue gas dynamics analysis of cottonseed	46
1.10- Free fall time-distance relationship	50
1.11- Head losses	56
1.12- Gas burner	60
1.12.1 Design of gas burner	61
1.13- Thermal insulation	63
1.14- Mass and heat balance.	64
2- Mathematical Model	69
2.1- Theoretical design of thermal reactor	69
2.2- Design consideration	69
V- MATERIALS AND METHODS	96
1 Raw Material	96
1.1 Seed variety	96
1.2 Cotton Seed Quality	97
1.2.1 Dimensional Characteristics	97
1.2.2 Particle and Bulk Densities	98
1.2.3 Dry Weight of 1000 Seeds.	100
1.2.4 Rigidity of Cottonseed.	100

1.2.5 Coefficient of friction.	102
1.2.6 Moisture content.	102
1.2.7 Seed Viability.	104
2- Continuous Flash Surface Burning System	105
2.1 Prototype Requirements	105
2.2 System Components	106
2.3 FSB System Prototype Design, Construction,	107
And Testing	
2.3 1 Seed hopper design	107
2.3 2 Seed screw conveyor	112
2.3 3 Design of scattering unit	118
2.3 4.Design and construction of thermal reactor:	118
2.3 4.1 General design assembly	120
2.3 4.2 Fire wring	122
2.3 4.3 Mixing device	125
2.3 4.4 Thermal reactor insulation	127
2.3 4.5 Frame construction	127
2.3 4.6 Cottonseed receiver bucket	128
3- Measuring Systems	130
3.1 Load cell for mass measurements	130
3.1.1 Design of load cell transducer	133
3.1.2 Calibration of load cell	135
3.2 Temperature measurements.	138
3.3 Time measurement of Seed falling	145