# PHENOTYPIC AND PATHOGENIC CHARACTERIZATION OF BLASTOCYSTIS ISOLATES

# FROM EGYPTIAN PATIENTS WITH COLORECTAL CARCINOMA

#### Thesis

Submitted for partial fulfillment of the M.D. degree in *Basic Medical Science (Medical Parasitology)* 

#### By

#### Heba Mohammed Awaed El Naggar

(M.B.B.Ch., M.Sc.) Assistant lecturer of Medical Parasitology Faculty of Medicine, Ain Shams University

#### Supervised by

#### Prof. Dr. Mazloum Mahmoud Ahmed

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

#### Prof. Dr. Fayza Sayed Mohamed Habib

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

#### Dr. Ghada Abdel Rahman Saad

Assistant Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

> Medical Parasitology Department Faculty of Medicine Ain Shams University 2018

# الخواص المظهرية والمسببة للمرض لطفيل المتبرعمة الكيسية (بلاستوسيستس) المعزول من مرضى مصريين مصابين بسرطان القولون والمستقيم

رسالة توطئة للحصول على درجة الدكتوراه الطبية في العلوم الطبية (الطفيليات الطبية) مقدمه من

الطبيبة / هبه مجد عواد مجد النجار بكالوريوس الطب و الجراحة العامة مدرس مساعد في قسم علم الطفيليات كلية الطب، جامعة عين شمس

### تحت إشراف

الأستاذ الدكتور / مظلوم محمود احمد أستاذ علم الطفيليات الطبية كلبة الطب- جامعة عين شمس

الأستاذة الدكتورة / فايزة سيد محد حبيب أستاذ علم الطفيليات الطبية كلية الطب جامعة عين شمس

الدكتورة / غادة عبد الرحمن سعد أستاذ مساعد علم الطفيليات الطبية كلية الطب -جامعة عين شمس

> قسم علم الطفيليات الطبية كلية الطب- جامعة عين شمس ٢٠١٨



First of all, thanks to **God**, to whom I relate any success that can be achieved at work in my life.

I am greatly honored to express my high appreciation and gratitude to **Prof. Dr. Mazloum Mahmoud Ahmed**, Professor of Medical Parasitology, Parasitology department, Faculty of medicine, Ain Shams University, for his role in choosing the subject, precious advices and continuous guidance throughout the whole work.

I would like to express my high appreciation and gratitude to **Prof. Dr. Fayza Sayed Mohamed Habib**, Professor of Medical Parasitology,

Parasitology department, Faculty of Medicine, Ain Shams University, for her keen supervision, great effort, continuous guidance and support throughout the whole work.

A word of thanks must go to **Dr. Ghada Abdel Rahman Saad**, Assistant Professor of Medical Parasitology, Parasitology department, Faculty of Medicine, Ain Shams University, for her kind help, sincere encouragement and constant guidance.

My special thanks to **Prof. Dr. Manal Abd El-Aziz Moustafa**, Professor and Head of Medical Parasitology department, for her faithful advice, precious help and continuous support.

Finally, I wish to thank all my family especially my Husband and my Mother, all my colleagues and any member who shared in this modest piece of work for their cooperation and patience.

This work was supported by Ain Shams Faculty of Medicine Grants Office, Grant No. 2016/31.

## List of Symbols and Abbreviations

| Symbols and abbreviations | Full names                                            |
|---------------------------|-------------------------------------------------------|
| °C                        | Degree Celsius                                        |
| μg                        | Microgram                                             |
| μg/ml                     | Microgram / milliliter                                |
| μl                        | Microliter                                            |
| μm                        | Micrometer                                            |
| 2 <sup>nd</sup>           | Second                                                |
| 3 <sup>rd</sup>           | Third                                                 |
| ACF                       | aberrant crypt foci                                   |
| ANOVA                     | Analysis of variance                                  |
| approx.                   | Approximate                                           |
| APS                       | Ammonium per-sulfate                                  |
| В.                        | Blastocystis                                          |
| B. hominis                | Blastocystis hominis                                  |
| B. galli                  | Blastocystis galli                                    |
| B. ratti                  | Blastocystis ratti                                    |
| Blasto-Ag                 | Blastocystis antigen                                  |
| BSA                       | Bovine serum albumin                                  |
| CaCl2                     | Calcium chloride                                      |
| Caco-2                    | Caucasian colon human epithelial adenocarcinoma cells |
| CHO cells                 | Chinese Hamster Ovary cells                           |
| cm                        | Centimeter                                            |
| CRC                       | colorectal cancer                                     |
| CTSB                      | cathepsin-B                                           |
| dH <sub>2</sub> o         | Distilled water                                       |
| DMEM                      | Dulbecco's modified Eagle's medium                    |
| DNA                       | deoxyribonucleic acid                                 |
| DTT                       | Dithiothretol                                         |
| ELISA                     | Enzyme-linked immune sorbent assay                    |

| ER                              | Endoplasmic reticulum                              |
|---------------------------------|----------------------------------------------------|
| F-actin                         | Filamentous actin.                                 |
| Fig.                            | figure                                             |
| G                               | Group                                              |
| GIT                             | Gastrointestinal tract                             |
| gm                              | Gram                                               |
| GM-CSF                          | granulocytes macrophages-colony stimulating factor |
| GT                              | Generation time                                    |
| H & E                           | Hematoxylin and eosin.                             |
| HC84                            | Human Colorectal Adenocarcinoma Cell Line          |
| HCL                             | Hydrochloric acid                                  |
| hr                              | hour                                               |
| hrs                             | hours                                              |
| H <sub>2</sub> SO <sub>4</sub>  | Sulphuric acid                                     |
| HT-29                           | Human intestinal epithelium cell lines             |
| HTC116                          | Human colorectal carcinoma cell line               |
| IBD                             | inflammatory bowel disease                         |
| IBS                             | irritable bowel syndrome                           |
| IEC-6                           | Rodent intestinal cell line.                       |
| IECs                            | Intestinal epithelium cells.                       |
| IFN-γ                           | interferon gamma                                   |
| IgA                             | immunoglobulin A                                   |
| IL-12                           | Interleukin 12                                     |
| IL8                             | interleukin 8                                      |
| IMDM                            | Iscove's Modified Dulbecco's Medium                |
| iNOS                            | inducible nitric oxide synthesize                  |
| IP                              | intestinal permeability                            |
| KCl                             | Potassium chloride                                 |
| kDa                             | kilo Dalton                                        |
| KH <sub>2</sub> PO <sub>4</sub> | Potassium phosphate, monobasic                     |
| lab                             | laboratory                                         |
| lbs/in <sup>2</sup>             | Pounds / inch square                               |

| LE                               | Locke's Egg medium                                                                |
|----------------------------------|-----------------------------------------------------------------------------------|
| log                              | logarithmic                                                                       |
| M                                | Molar                                                                             |
| MALDI TOF MS                     | matrix-assisted laser desorption/ ionization time-of-<br>flight mass spectrometry |
| MEM                              | minimum essential medium                                                          |
| mg                               | Milligram                                                                         |
| MgCl <sub>2</sub>                | Magnesium chloride                                                                |
| MIC                              | Minimum inhibitory concentrate                                                    |
| min                              | Minute                                                                            |
| ml                               | Milliliter                                                                        |
| MLC                              | Minimal lethal concentrate                                                        |
| MLO                              | mitochondrion-like organelles                                                     |
| mm                               | Millimeters                                                                       |
| mM                               | Millimolar                                                                        |
| mm <sup>3</sup>                  | Cubic millimeter                                                                  |
| MTZ                              | Metronidazole                                                                     |
| MTZ <sup>r</sup>                 | Metronidazole-resistant                                                           |
| MTZ <sup>s</sup>                 | Metronidazole-sensitive                                                           |
| MW                               | Molecular weight                                                                  |
| N                                | number                                                                            |
| Na <sub>2</sub> HPO <sub>4</sub> | Sodium phosphate, dibasic                                                         |
| NaCl                             | Sodium Chloride                                                                   |
| NaHCO <sub>3</sub>               | Sodium bicarbonate                                                                |
| NandII                           | Blastocystis subtype 1 isolate                                                    |
| NC                               | Negative control                                                                  |
| NF-κB                            | Nuclear factor kappa-light-chain-enhancer of activated B cells                    |
| NIH                              | National Institute of Health.                                                     |
| NJM                              | Nelson—Jones' medium                                                              |
| nm                               | Nanometer.                                                                        |
| NO                               | nitric oxide                                                                      |
|                                  |                                                                                   |

| $O_2^-$         | Superoxide                                                         |
|-----------------|--------------------------------------------------------------------|
| Org             | Organism                                                           |
| p53             | pro-apoptotic protein 53                                           |
| PBMCs           | peripheral blood mononuclear cells                                 |
| PBS             | Phosphate buffer saline                                            |
| PC              | Personnel computer                                                 |
| PCR             | polymerase chain reaction                                          |
| PCR-RFLP        | polymerase chain reaction-restriction fragment length polymorphism |
| PM              | Pavlova's medium                                                   |
| PML             | polymorphonuclear leucocytes                                       |
| PMNCs           | Polymorphonuclear cells                                            |
| PVA             | Polyvinyl alcohol                                                  |
| P-value         | Probability value                                                  |
| RFLP            | restriction fragment length polymorphism                           |
| RN94-9          | Blastocystis sp. non-invasive strain in rats                       |
| ROS             | reactive oxygen species                                            |
| rpm             | Round per minute.                                                  |
| RPMI            | Roswell Park Memorial Institute medium                             |
| s (in 18s rDNA) | Svedberg unit                                                      |
| SD              | standard deviation                                                 |
| SDS             | Sodium dodecyl sulfate                                             |
| SDS-PAGE        | Sodium dodecyl sulfate-polyacrylamide gel electrophoresis          |
| Sec             | seconds                                                            |
| SEM             | Scanning electron microscope                                       |
| SG              | Subgroup                                                           |
| sp.             | Species (singular)                                                 |
| spp.            | Species (plural)                                                   |
| SPSS            | Statistical package for Social Science                             |
| SSU-rDNA        | small subunit ribosomal deoxyribonucleic acid                      |
| SSU rRNA        | small subunit ribosomal ribonucleic acid                           |
| STs             | subtypes                                                           |

| STS   | sequence-tagged-site                                 |
|-------|------------------------------------------------------|
| T-84  | Human intestinal epithelium cell lines               |
| TBRI  | Theodor Bilharz Research Institute                   |
| TEF   | Trans-epithelial flux                                |
| TEM   | transmission electron microscopy                     |
| TEMED | Tetra methyl ethylene diamine                        |
| TER   | Trans-epithelial resistance                          |
| TGF-β | transforming growth factor β                         |
| Th1   | T-helper 1.                                          |
| Th2   | T-helper 2.                                          |
| TJ    | Tight junction.                                      |
| TJs   | tight junctions                                      |
| TNFα  | Tumor necrosis factor α                              |
| U     | Unit                                                 |
| UK    | United Kingdom                                       |
| USA   | United State of America                              |
| UV    | Ultraviolet                                          |
| UVR   | Ultraviolet rays                                     |
| V     | Volts                                                |
| V/V   | Volume / Volume                                      |
| VO    | viable organisms                                     |
| w/v   | Weight / Volume                                      |
| WR1   | a Blastocystis ratti isolate with zoonotic potential |
| ZO1   | Zonula Occludens-1                                   |

#### **ABSTRACT**

Previous studies had related *Blastocystis* sp. to cancer colon, as *Blastocystis* sp. antigen facilitates the proliferation of cancer cells *in vitro* and the organisms caused enhancement of drug-induced carcinogenesis *in vivo*.

The present work aimed to investigate the phenotypic and pathogenic characters and pathogenic effects of human-derived *Blastocystis* isolates from patients with colorectal carcinoma and from carriers without colorectal carcinoma (CRC) both symptomatic and asymptomatic.

Nineteen *Blastocystis* sp. isolates were recruited from CRC patients, and apparent Non-CRC symptomatic and asymptomatic carriers. For each isolate the following was done: growth kinetics study and MTZ-sensitivity assay in LE medium, examination of surface ultrastructure of organisms under SEM, analysis of protein profile and zymography by SDS-page. Experimental blastocystosis have been induced in mice to examine histopathological sections of large intestine for pathogenic effects of different isolates

Statistical significant differences existed between CRC and Non-CRC isolates as regards the surface ultrastructure, showing a coarse, intensely folded rough surface of CRC isolates, in contrast to, slightly rough and smooth surface of symptomatic and asymptomatic isolates, respectively, from Non-CRC carriers. A significant presence of two protein bands of 230 and 32 kDa could differentiate between CRC and Non-CRC isolates by SDS-page protein analysis. Significant differences proliferative pathogenic effects invasive were histopathological sections of large intestine of mice infected by isolates from CRC patients and isolates from Non-CRC carriers. Zymography showed statistical non-significant increased number of protease bands in CRC isolates than Non-CRC isolates. MTZ-sensitivity was nearly similar for CRC and Non-CRC asymptomatic isolates, both are significantly higher than in symptomatic isolates. In vitro growth kinetics of CRC and Non-CRC symptomatic isolates were nearly similar with higher peaks than the slower growing Non-CRC-asymptomatic isolates. In conclusion, phenotypic and pathogenic differentiating characters exist between CRC and Non-CRC Blastocystis isolates.

**Keywords:** *Blastocystis* sp. – Colorectal carcinoma – Symptomatic – Asymptomatic – Phenotypic characters – Pathogenic effects.

### PHENOTYPIC AND PATHOGENIC CHARACTERIZATION OF BLASTOCYSTIS ISOLATES FROM EGYPTIAN PATIENTS WITH COLORECTAL CARCINOMA

#### Protocol of

Thesis Submitted to Faculty of Medicine, Ain Shams University for Partial Fulfillment of Doctorate Degree in Medical Sciences

(Medical Parasitology)
By

#### **Heba Mohammed Awaed El Naggar**

M.B., B.Ch., M. Sc., Assistant lecturer of Medical Parasitology Faculty of Medicine, Ain Shams University

Under supervision of

#### Prof. Dr. Mazloum Mahmoud Ahmed

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

#### Prof. Dr. Fayza Sayed Mohamed Habib

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

#### Prof. Dr. Nashwa Salah El Din Abdel-Fattah

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

#### Dr. Ghada Abdel Rahman Saad

Assistant Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Department of Medical Parasitology Faculty of Medicine, Ain Shams University

2015

#### **INTRODUCTION**

Blastocystis is an enteric protistan parasite with zoonotic potential (Tan, 2008). It is one of the most common parasites colonizing the human gut, with prevalence ranging between 10% of the population in developed countries and 50% in developing countries (Wong et al., 2008). The name Blastocystis hominis was previously used in the designation of the species infecting humans. Recent phylogenetic analysis has shown that Blastocystis hominis as a unique entity does not exist, and more than one species of *Blastocystis* infects humans and suggest the existence of zoonotic strains of the parasite 2005). (Noël al.. Thus. it is preferable to use the "Blastocystis species" instead (Stensvold et al., 2007).

Blastocystis is a polymorphic protozoan. In addition to the three commonly recognized morphological forms: vacuolar, granular and amoeboid, (Vdovenko, 2000), later studies described several additional forms; cystic, avacuolar and multi-vacuolar (Tan, 2008 and Stensvold et al., 2009) with the vacuolated form being the most common and the small cyst form with a thick surface coat, surrounding the cells, the transmissible form of the parasite.

Clinical symptoms associating *Blastocystis* infection in humans (Windsor et al., 2002 and Boorom et al., 2008) vary as some patients are asymptomatic while others display severe gastrointestinal symptoms with abdominal cramps diarrhea, nausea, vomiting, and bloating. Many reports also found a significant association between infection with *Blastocystis* and irritable bowel syndrome (IBS) (Dapoigny, 2009 and Poirier et al., 2012). Although metronidazole is the treatment of choice for *Blastocystis* infections, resistance to metronidazole was reported (Yakoob et al., 2004 and Stein, 2007). The virulence factors, pathogenicity and other risk factors involved in disease manifestation are still obscure (Scanlan, 2012). Several studies linked the pathogenicity to interaction between parasite products (e.g. cysteine protease) and enterocytes influencing host inflammatory and immunological responses. Secretion of proteases and other hydrolytic enzymes by *Blastocystis* have been identified and attributed to be responsible for the pathogenesis of gastrointestinal symptoms (Puthia et al., 2008 and

**Abdel-Hameed and Hassanin, 2011**) and cleavage of human secretory immunoglobulin A thereby helping in immune evasion and promoting parasite survival in vivo (**Puthia** *et al.*, **2005**).

Studies on the genetic and molecular characterization of *Blastocystis* sp. isolates derived from human showed that humans are natural hosts of nine subtypes (ST1 through ST9), of which ST1 to ST4 are by far the most common (**Stensvold et al., 2007** and **Stensvold, 2013**). Genotyping using partial small subunit ribosomal RNA (ssrRNA) analysis of isolates from Egyptian symptomatic patients identified a total of five STs (ST1, ST2, ST3, ST4, and ST6) of which ST3 was the most common ST (61.90%) followed by ST1 (19.05%) and ST2 (19.05%)(**Souppart et al., 2009**).

Colorectal cancer (CRC) is a common cancer worldwide. It is the third most common cancer worldwide after lung and breast cancers (CDC, 2011). CRC affects men and women of all racial and ethnic groups, and is most often found in people aged 50 years or older in developed countries. CRC was diagnosed in 14% of colonoscopies performed in Egypt. The mean age of patients was 51 years with 25% of cancers occurring in patients aged less than 40 years (Gado et al., 2014).

Several studies have shown a correlation between the inflammation that is caused by infectious agents such as parasites and the development of cancer in human (Fitzpatrick, 2001). Evidence of *Blastocystis* parasite facilitating cancer cell growth was proved through recording the cytopathic effect, cellular immunomodulation, and apoptotic responses of *B. hominis*, especially in malignancy. Significant ultra-structural lesions on the ileocecal mucosa in mice infected with *B. hominis* were reported (Zhang *et al.*, 2006). Also, an intense inflammatory reaction and precancerous polyps were later described in caecum and proximal colon tissues in rats infected with *Blastocystis* species (Hussein *et al.*, 2008). Chandramathi *et al.* (2009) have suggested that *B. hominis* may possess the ability to induce the growth of colorectal cancer cells by inhibiting the apoptotic effect of colon cancer cells, and in 2010, Chandramathi *et al.*, reported that solubilized *Blastocystis* antigen facilitated the proliferation of colon cancer cells HCT116. Also, Chan *et al.* 

(2012) showed that *B. hominis* isolated from an asymptomatic individual could facilitate the proliferation and growth of existing cancer cells. **Kumarasamy** *et al.* (2013) found that *Blastocystis sp.* subtype 3 triggers higher proliferation of human colorectal cancer cells, and in 2014, the authors showed a significant *Blastocystis* infection among colorectal carcinoma patients (21.08%) compared to the asymptomatic normal individuals (9.95%)(Kumarasamy *et al.*, 2014).

Investigation of the pathogenic potential of *Blastocystis* in humans have focused on genotypic analysis (Kaneda *et al.*, 2001 and Yan *et al.* 2006) without providing phenotypic information on the isolates studied. Therefore, no comparisons of phenotypic similarities or differences could be made between the isolates (Tan *et al.*, 2008).

The existence of extreme genetic diversity among *Blastocystis* isolates necessitates the extrapolation of observations of morphology, drug resistance and pathogenesis from one isolate to another.

#### AIM OF THE WORK

The aim of the present work is to study the phenotypic and pathogenic characteristics of *Blastocystis* isolates from patients having colorectal carcinoma in comparison with those isolated from infected individuals without colorectal carcinoma.

#### **PLAN OF THE WORK**

#### I. STUDY DESIGN

- A cross sectional study will be done in which Blastocystis Isolates collected from 2 groups will be compared for their phenotypic and pathogenic characteristics:
  - **Group 1:** Patients with colorectal carcinoma attending Ain Shams University Hospitals
  - **Group 2:** infected individuals without colorectal carcinoma.
- Inclusion and exclusion criteria: The samples will be collected from
  patients with colorectal carcinoma immediately after diagnosis and before
  receiving anti-cancer therapy. Samples collected from patients with other
  intestinal parasites will be excluded from the study.
- The study will be done according to the regulations of the Ain Shams
   University Ethical Committee that complies with the 1964 Helsinki
   declaration. The nature of the study will be explained to individuals
   enrolled in this study and oral consents will be obtained from them before
   sample collection.
- The sample size included in each group will be determined using appropriate statistical sample size equation methods after consultation of a medical statistician considering the prevalence of colorectal carcinoma and *Blastocystis* in Egypt.

#### II. SAMPLE COLLECTION AND CULTURING OF THE PARASITE:

- Stool samples will be collected from each patient in a clean container and immediately subjected to parasitological examination by direct and formalin-Ethyl acetate concentration techniques, modified Ziehl– Neelsen- and trichrome-stained smears to diagnose infection with Blastocystis or other parasites.
- Positive stool samples for *Blastocystis* will be cultured on suitable medium and axenized by repeated sub-culturing every 2 – 3 days in fresh medium containing antibiotics.
- Study the growth kinetics of the parasite in culture.
- Determination of in-*vitro* metronidazole sensitivity.

# III. HARVESTING OF *BLASTOCYSTIS* AND STUDY OF PHENOTYPIC AND PATHOGENIC CHARACTERISTICS OF THE ISOLATES:

Parasite isolates will be maintained by culturing and sub-culturing in suitable medium, the harvested parasites will be subjected to:

- i- Studying the surface ultra-structure characters of representatives isolates from both groups by electron microscopy.
- ii- Histopathological study by experimental infection of Swiss *albino* mice with the collected isolates according to the method of **Yoshikawa** *et al.* (2004) and **Zhang** *et al.* (2006).
- iii- Soluble parasite antigen will be prepared from each isolate according to **Chen et al.** (1999), and will be subjected to Sodium-dodecyl-sulphate polyacrylamide gel-electrophoresis (SDS-PAGE) according to **Laemmli** (1970) to study:
  - The protein profile.
  - The proteinase activity.

#### IV. COMPARING AND ANALYSIS OF THE RESULTS

The criteria under study for both groups of isolates will be compared using the appropriate statistical technique.