سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

IMPROVING NYLON FABRIC PROPERTIES VIA GRAFTING BY A NEW PROPOSED REDOX INITIATION SYSTEM

THESIS

SUBMITED FOR THE DEGREE OF M.Sc

BY

DALIA MOHAMED MOHAMED ESSA

(B.Sc. Chem. 1994)

NATIONAL INSTITUTE FOR STANDARDS

TO

CAIRO UNIVERSTIY

(2001)

B

APPROVAL SHEET FOR SUBMISSION

Title of thesis: "Improving nylon fabric properties via grafting by a new proposed redox initiation system".

Name of Candidate: Dalia Mohamed Mohamed Essa.

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Kamal Aziz.

Signature:

2- Prof. Dr. Ferial Mohmoud Tera.

Signature:

Prof./ Dr. Mohamed H. El. Nagdy

Chairman of Chemistry Department.

Faculty of Science - Cairo University.

ABSTRACT

Name of Candidate: Dalia Mohamed Mohamed Essa.

Title of thesis: "Improving nylon fabric properties via grafting by a new proposed redox initiation system".

Degree: (M.Sc.) Unpublished Master of Science Thesis, Faculty of Science – Cairo University, 2000.

The original work presented in this thesis was undertaken to improve nylon fabric properties via grafting with acrylonitrile monomer by a new proposed redox initiation system using potassium persulphate (KPS) as a main oxidizing agent in conjunction with sodium bisulphite (SBS) or benzaldehyde sodium bisulphite adduct (BSBS) as reducing agents. Optimization conditions for grafting including the concentration of the redox system components, polymerization time and temperature, liquor ratio, monomer concentration were studied. The produced grafted nylon and ungrafted nylon fabrics were characterized using IR, thermogravimetric analysis and differential scanning calorimetry. Also mechanical properties including, thickness, wettability, air and water permeability besides bursting strength were examined and discussed.

The dyeabillity and fastness properties of the grafted nylon fabric with two different classes of dyes (disperse and direct) and the optimal conditions of dyeing, pH values, temperature and time of dyeing, liquor ratio and dye concentration were studied in relation to the ungrafted nylon fabric.

Keywords: Nylon, polyamide, IR analysis, thermal analysis, dyeing of nylon, mechanical properties.

Supervisors: Prof. Dr. Kamal Aziz.

Prof. Dr. Ferial Mohmoud Tera.

Prof./ Dr. Mohamed, H. El. Nagdy

Chairman of Chemistry Department.

Faculty of Science - Cairo University.

Notes

Besides the work carried out in this thesis, the candidate / Dalia Mohamed Mohamed Essa had attended post graduate studies for the partial fulfillment of the M.Sc. degree in the following topics:

1-Thermodynamic.

14- Advanced inorganic chemistry

2- X-ray and Thermal analysis.

15- Molten salts.

3- Quantum chemistry.

16- electrochemistry.

4- Advanced Analytical Chemistry.

17- Nuclear chemistry

5- Catalysis.

18- Metallurgy

6- Spectroscopy.

19- Adsorption.

7- New trends in analysis.

20- Group theory

8- Modeling in physical chemistry.

21- Advanced Chelatometry

9- Techniques of molecular structure.. 22- Mathematics.

10- Electrical double layer.

11-Electro Kinetic phenomena.

12-Non-aqueous solvents..

13- Mechanism of inorganic chemistry.

Date of birth: 8 / 9 / 1973

Place of birth: Giza - Egypt

Prof./ Dr. Mohamed H. El.Nagdy

Chairman of Chemistry Department. Faculty of Science – Cairo University. **CONTENTS**

<u>CONTENTS</u>

	Page
Acknowledgment	i
Aim of the present work	ii
List of Tables	
List of Figures	
Summary	viii
Chapter	
1. Introduction	1
1.1. Man- Made Fibers	1
1.1.1. Polyamide Fibers	
1.1.1.1. Polyamide 66	3
1.1.1.2. Polyamide 6	5
1.1.1.3. Quiana	5
1.1.1.4. Polyamide 11 or Rislan	6
1.1.1.5. Polyamide 610	6
1.1.1.6. Terlon	6
1.1.1.7. Other Polyamide	6
1.1.2. Aramide Fibers	7
1.2. Physical Properties of Polyamide Fiber	8
1.2.1. Moisture Absorption	8
1.2.2. Thermal Properties	
1.2.3. Crystallinity	9
1.2.4. Electrical Properties	10
1.3. Mechanical Properties of Polyamide Fiber	
1.3.1. Elasticity	11
1.3.2. Tensile Strength	11
1.4. Chemical Properties of Polyamide Fiber	12

1.4.1. Different Types of Bonds	12
1.4.2. Effect of Acids	12
1.4.3. Effect of Bases	12
1.4.4. Solubility	13
1.4.5. Hydrolysis	13
1.5. Degradation Properties of Polyamide Fiber	14
1.5.1. Sunlight Degradation	14
1.5.2. Thermal Degradation	14
1.5.2.1. Differential Scanning Calorimetry (DSC)	15
1.5.2.2. Thermogravimetric Analysis (TGA)	15
1.6. Modification of Polyamide	18
1.6.1. Cross Section Modification	18
1.6.2. Texture Modification	
1.6.3. Cross Linking	18
1.7. Chemical Modification of Nylon Fabrics	19
1.7.1. Vinyl Graft Copolymerization onto Polyamide Fibers.	19
1.7.1.1. Methods of Grafting	20
A- Chain Transfer.	20
B- Physical Activation	20
C- Chemical Activation	21
I. Initiation by Persulphate	21
II. Initiation by Hydroxyl Radical (Redox System)	22
III. Initiation by Manganese IV	23
IV. Initiation by Azobisisobutyronitrile	24
V. Initiation by Ceric ions	
VI. Initiation by Other Chemical Methods	
1.8. Dyeing of Polyamide Fabrics	27
1.8.1. Dyeing Process	

Chapter 2

2. Experimental Work29
2.1. Materials29
2.1.1. Fabrics29
2.1.2. Chemicals 29
2.1.3. Dye Stuffs29
2.2. Grafting Process29
2.3. Dyeing Method30
2.4. Testing and Measurements30
2.4.1. Colour Strength30
2.4.2. Fastness Properties30
2.4.3. Physical Properties Measurements31
2.4.3.1. Air Permeability31
2.4.3.2. Water Vapour Permeability31
2.4.3.3. Bursting Resistance31
2.4.3.4. Wettability31
2.4.3.5. Thickness Test 31
2.4.4. Infra-Red Analysis (IR)31
2.4.5. Thermal Analysis 32
2.4.5.1. The Thermogravimetric Analysis (TGA) 32
2.4.5.2. The Differential Scanning Calorimetry (DSC)32
Chapter 3
Results and Discussion
3.1. Factors Affecting Graft Polymerization of Nylon using
Acrylonitrile33
3.1.1. Concentration of the Redox Systems Components36
3.1.2. Polymerization Temperature and Time41

3.1.3. Liquor Ratio	·51
3.1.4. Monomer Concentration	
3.1.5. Concentration of the Redox Systems Components at	
Monomer Concentration	
3.2. Characterization of Grafted Nylon Fabric	
3.2.1. Infra-Red Analysis	
3.2.2. Thermal Analysis	69
3.2.2.1. The Thermogravimetric Analysis (TGA)	69
3.2.2.2. The Differential Scanning Calorimetry (DSC)	
3.2.3. Thickness and Wettability	
3.2.4. Air and Water Permeability	83
3.2.5. Bursting Strength	87
3.3. Dyeing of Grafted Nylon with Direct and Disperse Dyes.	
3.3.1. The pH of the Dyeing Bath	
3.3.2. Dyeing Temperature	93
3.3.3. Dyeing Time	96
3.3.4. Liquor Ratio	
3.3.5. Dye Concentration	
3.3.6. Fastness Properties	
3.3.6.1. Washing Fastness	
3.3.6.2. Light Fastness	
References	
Arabic Summary.	