سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

MANSOURA UNIVERSITY FACULTY OF ENGINEERING MECH. POWER DEPT.

STUDY OF PERFORMANCE AND COMBUSTION CHARACTERISTICS OF A STRATIFIED CHARGE SPARK **IGNITION ENGINE**

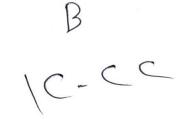
By YOUSSEF EBRAHIEM ABD EL-GHAFFAR M.Sc. Mechanical Power Engineering

A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Ph.D. in

Mechanical Engineering

Supervisors

Prof. Dr. Salah Hassan El-Emam Professor in Mech. Power Eng. Dept.- Mansoura University


Prof. Dr. Abdel-Raof Ali Desoky Professor in Mech. Power Eng. Dept.- Mansoura University

Dr.

Mohamed A. Tolba

Ass. Professor in Mech. Power Eng. Dept.- Mansoura University

1997

Title of Thesis:

STUDY OF PERFORMANCE AND COMBUSTION CHARACTERISTICS OF A STRATIFIED CHARGE SPARK IGNITION ENGINE

Student Name: YOUSSEF EBRAHIEM ABDEL-GHAFFAR

Supervisors

Prof. Dr. Salah Hassan El-Emam	Professor in Mech. Power Eng. Dept Faculty of Engineering Mansoura University	s.H.El-B	va
Prof. Dr. Abdel-Raof Ali Desoky	Professor in Mech. Power Eng. Dept Faculty of Engineering Mansoura University	1.0-1	
Dr. Mohamed A. Tolba	Ass. Prof. in Mech. Power Eng. Dept Faculty of Engineering Mansoura University	Fas	

Title of Thesis:

STUDY OF PERFORMANCE AND COMBUSTION CHARACTERISTICS OF A STRATIFIED CHARGE SPARK IGNITION ENGINE

Student Name: YOUSSEF EBRAHIEM ABDEL-GHAFFAR

Examiners:

Prof. Dr. Ahmed Hassan Bawady	Prof. and Head of Automobiles Eng. Dept. Faculty of Engineering Ain Shams University	D.Bawadu	S
Prof. Dr. Mahmoud Mostafa Awad	Professor and Head of Mech. Power Eng. Dept. Faculty of Engineering Mansoura University	M.Dl	
Prof. Dr. Salah Hassan El-Emam	Professor in Mech. Power Eng. Dept. Faculty of Engineering Mansoura University	S.14, E1-E	we

ABSTRACT

The main target of developing the spark ignition engines is to reduce the hazard exhaust products emitted from these engines. It also aims to increase their thermal efficiency which in turns require the increment of compression ratio. The latter can't achieved in the conventional engines due to the abnormal combustion. There are many ways to accomplish this goal such as applying the stratified charge technique.

Among the techniques of stratification is the use of divided-chamber system which fulfills to some degree the two basic requirements of stratified charge engines: (1) the inhibition of mixing prior to ignition to achieve stratification, and (2) rapid mixing just before combustion and expansion for complete combustion.

Surveying of the available literature establishes the need for furthers research into the combustion characteristics of the stratified charge engines. The optimization of some of the controlling operating and design parameters are still a matter of controversy.

Therefore an experimental set-up was established with the objective of studing the combustion process in divided-chamber stratified charge engine by the injection of different fuels in the pre-chamber followed by oxygen injection with each type of the fuels, therefore the study focused on the effects of the degree of stratification, the pre-chamber volume, and the time of fuel and oxygen injection upon the engine performance and combustion characteristics at different compression ratios and speeds.

Tests were run on a Ferryman A30 marine water-cooled engine with 95 mm cylinder bore and 82 mm stroke. The engine is modified to be a divided chamber stratified charge engine and it was prepared with different facilities to obtain maximum possible flexibility both in the

range over which engine design and operating parameters. These facilities give the following features; variable pre-chamber volume, variable ignition timing, variable pre-chamber injection timing, variable injection of fuel type in the pre-chamber and variable compression ratio.

Instrumentation for measurements of speed, torque, fuel and air consumption, exhaust temperature, water inlet and outlet temperatures, and coolant flow rate were installed. Gasoline, propane and oxygen were injected separately in the pre-chamber. Gasoline was injected by an injection pump through an injector into the pre-chamber. Propane fuel was compressed by a gas compressor and injected through a nozzle into the pre-chamber. The oxygen was injected directly from oxygen container through a nozzle into the pre-chamber. Each injection system was equipped with a control system for injection pressure and timing.

The pre-chamber is cylindrical in shape, and its volume can be varied from 5.0 to 20.0 percent of the engine clearance volume by varying the thickness of the annular spacer fitted between the injector and the pre-chamber body. The Pre-chamber and the main-chamber are connected by a duct of 8 mm opening diameter.

The engine is directly coupled to an electrical dynamometer. This is also used to start the engine and to turn the engine for friction power tests. The experimental results were also supported by theoretical analysis model and computer program for this type of engines. The principle measured pressures for computer simulation purposes traces used to study the combustion characteristics and to interpret the trends in engine performance.

The reported results showed that the optimum pre-chamber volume is approximately 10 % of the total clearance volume. It also showed that the

3.7.1 Standard Engine Test	53
3.7.2 Stratified Charge Engine Test	53
3.7.3 Investigation of the Combustion Characteristics	54
3.8 Thermodynamic Analysis of Mass Fraction Burned	56
3.8.1 Analysis Assumptions	59
3.8.2 Governing Equations	59
3.8.3 Momentary Values	62
3.8.4 Method of Solution	66
CHAPTER 4. THEORETICAL ANALYSIS	
4.1 Introduction	67
4.2 One Stage Model	68
4.2.1 Chemical Equilibrium Otto Cycle Analysis	68
4.2.2 Outline of the Mathematical Simulation	73
4.2.3 Cycle Study	81
4.3 Homogeneous Mixture, Two Stage Combustion Model	85
4.3.1 Introduction	85
4.3.2 The Compression Process	87
4.3.3 The Combustion Process	92
4.3.4 The Expansion Process	98
4.4 Description of the Stratified Charge Model	100
CHAPTER 5 RESULTS AND DISCUSSION	
5.1 Introduction	103
5.2 Experimental Results Related to Stratification Charge Engine	104
5.2.1 Volume Ratio Effects	104
5.2.2 Injection Time Effects	120
5.2.3 Stratification Effects	124

5.2.4 Effects of Compression Ratio	149
5.2.5 Effects of Oxygen Injection	153
5.3 Comparison between Standard and Stratified Charge	
Engine Characteristics	153
5.4 Theoretical Results	162
5.5 Comparison between Theoretical and Experimental Results	171
CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	
6.1 Conclusions	176
6.1.1 Conclusions Based on Experimental Results	177
6.1.2 Conclusions Based on the Theoretical Results	178
6.2 Recommendations for Future Work	179
REFERENCES	180
APPENDICES	
A. The Ignition Box Calibration	A-1
B. Formulas of Experimental Data	B-1
C. Error Analysis	C-1
D. Listing of Computer Programs	D-1
E. Tables of Results	E-1

LIST OF FIGURES

Figure		Page
1.1	Open chamber stratified charge system.	8
1.2	Divided chamber stratified charge system.	8
2.1	Ricardo's cylinder head of a stratified charge engine	16
2.2	Turkish's 3-valve stratified charge engine.	16
2.3	Nilov torch ignition engine.	19
2.4	Method of pre-chamber torch ignition in internal	
	combustion engine by Gussak.	19
2.5	Stratified charge engine by Newhall and EL-Missiri.	23
2.6	Emissions from standard ignition and pre-chamber	
	engine.	23
2.7	CVCC engine cylinder head.	24
2.8	Comparison of standard and stratified charge engine	
	(Honda - CVCC).	24
2.9	Maps of emissions and specific fuel consumption.	26
2.10	Comparison of stratified charge combustion processes.	28
3.1	Schematic of experimental divided chamber stratified	35
	charge engine cylinder.	
3.2	Calibration data for the compression ratio for different	
	volume ratio.	37
3.3	Schematic diagram of the test bed.	39
3.4	A photograph of test bed.	40
3.5	Calibration results for the used torque meter.	41
3.6	Fuel, oxygen and air metering systems.	43

3.7	Electric control system for fuels and oxygen injection	
	time.	44
3.8	Calibration results for laminar propane flow meter.	46
3.9	Calibration results for laminar air flow meter.	46
3.10	Calibration results for pressure transducers.	49
3.11	Schematic diagram of cylinder pressure indicating	
	systems.	50
3.12	Definition of the combustion phases on mass fraction	
	burned versus crank angle curve.	55
3.13	Schematic of two - zone thermodynamic system for	
	release analysis.	60
3.14	Values of γ_b and γ_u versus equivalence ratio.	63
3.15	Values of $(h_{fu}-h_{fb})$ versus equivalence ratio.	63
4.1	Assumed thermodynamic cycle.	69
4.2	Schematic diagram for compression process.	69
4.3	Thermodynamic model of divided chamber engine	
	during compression process.	88
5.1	Effect of volume ratio on brake power for different	
	speeds and degrees of stratification with gasoline	
	injection.	106
5.2	Effect of volume ratio on brake power for different	
	speeds and degrees of stratification with propane	
	injection.	107
5.3	Effect of volume ratio on brake power for different	
	equivalence ratio and compression ratios with gasoline	
	injection.	108
5.4	Effect of volume ratio on specific fuel consumption for	
	different speeds and degrees of stratification with	

optimum time of starting fuel injection is 50 - 60° BTDC during the compression stroke and ends up at 5° from the beginning of the expansion stroke. Oxygen injection in the beginning of compression with a concentration of 30 % in the used air enhances the engine performance and combustion characteristics.

The results of the study indicated that the stratified charge engines can be operated by injecting different fuels at high compression ratios without problems which in turns leads to increase the thermal efficiency.

The results also showed that the stratified charge engine can be operated at lean mixture with equivalence ratio of 0.55, which couldn't be achieved with the conventional engines. The operation with lean mixture leads to the decrease of NO concentration emitted with the exhaust products.

The obtained results indicated that the charge stratification in a divided chamber has the ability to run at leaner overall equivalence ratios. Equally, in practice, it might well be that faster combustion rates could be achieved with charge stratification. In addition, lower pollutant emission levels are predicted for stratified charge combustion process. Charge stratification is clearly a worthy topic for further experimental work. It is considered that the model reported in this thesis is most useful in providing an understanding disappointing performance of divided chamber (stratified and non-stratified) engines. It might well be possible to incorporate a finite burning rate expression into the theoretical model, perhaps based on the observed flame propagation and pressure rises noted in the experimental work.