Screening of Insulin (INS) Gene in Permanent Neonatal Diabetes During The First Year of Life

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in Clinical and Chemical Pathology

By

Aisha Omar Mohamed Atef Tolba

M.B,B.Ch, Faculty of Medicine, Cairo University

Under Supervision of

Dr. Nadida Abdelhamid Gohar

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr. Walaa Ahmed Mohamed Rabie

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr. Marwa Farouk Mira

Lecturer of Pediatrics
Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2014 السالم

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my **Professor Dr. Nadida Abdelhamid Gohar**, Professor of Clinical and

Chemical Pathology, Faculty of Medicine, Cairo University,

under whose supervision I had the honour to proceed with this

work. Her persistent encouragement, help and supervision were

the main push in initiating and completing this work.

I am grateful to **Dr. Walaa Ahmed Mohamed Rabie**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her constant support and meticulous revision that have been of utmost help in performing this work, all that with unlimited generosity in time and effort.

I wish to express my appreciation to **Dr. Marwa Farouk**Mira, Lecturer of Pediatrics, Faculty of Medicine, Cairo

University, who gave me great help in this work.

I do feel highly indebted to **Professor Dr. Sahar Abdel-Atty Sharaf**, Professor of Clinical and Chemical Pathology, Cairo University, for her generous help, constant support, valuable remarks and indispensable role in initiating and completing this work.

I would especially like to thank to **Dr. Marwa Mahmoud**Abdel-Aziz Alsharkawy, Lecturer of Clinical and Chemical
Pathology, Faculty of Medicine, Cairo University, whose
technical knowledge and scientific expertise were of significant
aid to the achievement of that work.

I will always be grateful to my professors and colleagues for their support and encouragement.

My gratitude to **my family** for their patience and continuous encouragement.

Last but not the least my appreciation and thanks are due to my little patients and their families without whom this work would have never been conducted.

Abstract

Background: Permanent neonatal diabetes (PND) is a monogenic form of diabetes resulting from mutations in a number of different genes encoding proteins that play a key role in the normal function of the pancreatic beta-cell. A correct genetic diagnosis can affect treatment and clinical outcome. Mutations in the insulin gene (*INS*) itself have been identified as a cause of neonatal diabetes. This study aimed to investigate the genetic variations in the coding region and intronic boundaries of *INS* gene and their genotype phenotype correlation in a group of Egyptian PNDM infants with onset in the first 12 months of age.

Methods: We screened exons 2 and 3 with intronic boundaries of *INS* gene by direct gene sequencing in 30 PND patients (14 males and 16 females) and in 20 healthy control subjects to verify the resulting single nucleotide polymorphisms (SNPs). A detailed clinical phenotyping of the patients was carried out to specify the diabetes features in those found with an *INS* variant.

Results: We identified five variants (four SNPs and one silent mutation), c.187+11T>C, c.-17-6T>A, c.*22A>C, c.*9C>T and c.36G>A (p.A12A) with allelic frequency of 96.7%, 80%, 75%, 5% and 1.7%, respectively. All showed no statistically significance difference compared to the controls except for c.*22A>C.

Conclusion: Genetic screening for the *INS* gene did not reveal any evident role in diagnosis of PNDM among the studied group of Egyptian children.

Keywords: Permanent neonatal diabetes (PND); *INS*; mutations; DNA sequencing

List of Contents

		Page
List of Abbreviations		i
List of Tables		iii
List of Figures		iv
Introduction and Aim o	of the Work	1
Review of Literature		
Chapter 1:	Permanent Neonatal Diabetes Mellitus	3
Chapter 2:	Insulin (INS) Gene	25
Chapter 3:	Insulin gene mutations and Permanent Neonatal Diabetes Mellitus	35
Chapter 4:	DNA sequencing	42
Subjects and Methods		58
Results		85
Discussion		93
Summary and Conclusi	on	99
Recommendations		100
References		101
Appendices		114
Arabic summary		

List of Abbreviations

ABCC8 ATP-binding cassette transporter subfamily C, member 8

AD Autosomal dominant

APS Adenosine 5'phosphosulfate

AR Autosomal recessive
CBP Creb-binding protein
CCD Charge coupled device
ddNTP Dideoxynucleotide

DEND Developmental delay, Epilepsy and Neonatal Diabetes

DKA Diabetic ketoacidosis

DMR Differentially methylated region

dNTP Deoxynucleotide

EIF2AK3 Eukaryotic translation Initiation Factor 2 Alpha kinase 3

ERAD Endoplasmic reticulum associated degradation

FOXP3 Forkhead box P3
GCK Glucokinase gene

GAD Glutamate decarboxylase

GLIS Glioma-associated oncogene similar

GlisBS Glis binding site

GLUT2 Glucose transporter 2

GWAS Genome wide association studies

HCR Hydrophobic core region

HGVS Human Genome Variation SocietyHIL Hypomethylation at imprinted loci

HYMAI Hydatiform mole-associated and imprinted

IA-2A Islet antigen-2 antibody

IC Imprinting center

IDDM2 Insulin dependent diabetes mellitus 2ILPR Insulin-linked polymorphic region

INS Insulin gene

IPEX Immune dysregulation, Polyendocrinopathy, and Enteropathy,

X-linked syndrome

IPF1 Insulin Promoter Factor-1

IRDN Insulin-related DNA polymorphism

IUGR Intra-uterine growth retardation

IVS Intervening sequences

K_{ATP} ATP-sensitive potassium channel

KCNJ11 Potassium inwardly-rectifing channel, subfamily J, member 11

Kir Inwardly rectifying potassium channels

MafA v-maf musculoaponeurotic fibrosarcoma oncogene homolog A

MDI Monogenic diabetes of infancy

MODY Maturity onset diabetes of the young

NCBI National Centre of Biotechnology Information

NDM Neonatal Diabetes Mellitus
 NEUROD1 Neurogenic differentiation 1
 NGS Next-generation sequencing
 PCR Polymerase Chain Reaction

PDX1 Pancreas/ duodenum homeobox protein 1

PGD Pre-implantation genetic diagnosis

PLAGL1 Pleomorphic adenoma of the salivary gland gene like 1

PNDM Permanent Neonatal Diabetes Mellitus

PPi pyrophosphate

PTF1A Pancreas transcription factor 1A

RFX Regulatory factor X-box binding family

SGA Small for gestational age

SLC2A2 Solute carrier family member 2
 SLC19A2 Solute carrier family 19 member 2
 SNPs Single nucleotide polymorphisms

SOLiD Sequencing by Oligo Ligation Detection

SP Signal peptide

SUR Sulfonylurea receptor

TNDM Transient Neonatal Diabetes Mellitus

T1DM Type 1 Diabetes Mellitus **T2DM** Type 2 Diabetes Mellitus

UPD Uniparental disomyUTR Untranslated region

VNTR Variable number tandem repeatWRS Wolcott-Rallison syndrome

ZAC Zinc finger protein which regulates apoptosis and cell cycle

ZFP57 Zinc finger protein 57ZMWs Zero-mode waveguides

List of Tables

Table 1:	Genotype/ phenotype relationship in PNDM
Гable 2:	Insulin gene mutations and diabetes
Гable 3:	Comparison of Next and Next Next generation platforms
Table 4:	The nomenclature of amino acids
Table 5:	Forward and Reverse Primers sequence for exons 2 and 3 of <i>INS</i> gene
Гable 6:	Demographic characteristics of studied cases
Γable 7:	Clinical and laboratory characteristics of studied cases
Γable 8:	Genotype distribution of c17-6T>A variant among cases and control group
Γable 9:	Genotype distribution of c.187+11T>C variant among cases and control group
Table 10:	Genotype distribution of c.36G>A variant among cases and control group
Γable 11:	Genotype distribution of c.*22A>C variant among cases and control group
Table 12:	Genotype distribution of c.*9C>T variant among cases and control group
Table 13:	Genotype distribution of combined variants of exon 2 c17-6T>A and c.187+11T>C, respectively among cases and control group
Γable 14:	Allele distribution of c17-6T>A variant among cases and control group
Table 15:	Allele distribution of c.187+11T>C variant among cases and control group
Table 16:	Allele distribution of c.36G>A variant among cases and control group
Г able 17 :	Allele distribution of c.*22A>C variant among cases and control group
Γable 18:	Allele distribution of c.*9C>T variant among cases and control group

List of Figures

Figure 1:	Schematic representation of paternal uniparental disomy (UPD) of chromosome 6	
Figure 2:	Three different genetic mechanisms cause 6q24-TNDM	
Figure 3:	Schematic representation of the octameric K_{ATP} channel complex viewed in cross section	
Figure 4:	(A) Insulin secretion in relation to the potassium channel encoded for by <i>KCNJ11</i> and <i>ABCC8</i> in a normal subject (B) Heterozygous activating mutations in the <i>KCNJ11</i> and <i>ABCC8</i> genes cause PNDM	
Figure 5:	Pancreatic beta-cell genes known as targets of monogenic diabetes	
Figure 6:	Clinical subtypes of permanent neonatal diabetes mellitus and their management	
Figure 7:	The location of <i>INS</i> gene on chromosome 11	
Figure 8:	Synthesis of insulin	
Figure 9:	Post-translational modification of preproinsulin to biologically-active insulin	
Figure 10:	Three key transcription factors that bind within promotor region	
Figure 11:	Insulin VNTR minisatellite repeats in insulin promoter area	
Figure 12:	The ER stress response pathway	
Figure 13:	(A) DNA sequences of the <i>INS</i> mutations c.137G>A (R46Q) and c.163C>T (R55C) found in the Norwegian MODY Registry and the Norwegian Childhood Diabetes Registry, respectively (B) Location of the two corresponding amino acid substitutions in the preproinsulin molecule	
Figure 14:	Schematic representation of the intron-exon structure of the <i>INS</i> gene and the splicing changes due to the found mutation	
Figure 15:	Electropherogram for c.188-31G>A variant of <i>INS</i> gene	
Figure 16:	Electropherogram for c.38T>G (p.L13R) heterozygous <i>INS</i> mutation and the normal DNA sequence for comparison	
Figure 17:	Diagrammatic representation of the amino acid sequence of human preproinsulin	

Figure 18:	Diagramatic representation of the structure of dideoxy- nucleotide (ddNTP) and deoxynucleotide (dNTP)
Figure 19:	Manual sequencing using radiolabeled ddNTPs
Figure 20:	Schematic representation of a capillary-based DNA sequencing system
Figure 21:	Next and Next Next generation sequencing different platforms
Figure 22:	(A) Cost per Megabase of DNA Sequence (B) Cost per Genome
Figure 23:	Clonal amplification of sequencing features. (A) Emulsion PCR (B) Bridging amplification
Figure 24:	Schematic representation showing sequencing during synthesis using 3'- O blocking reversible terminators
Figure 25:	Pyrosequencing chemistry: biochemical reactions and enzymes involved in the generation of light signals by DNA pyrosequencing
Figure 26:	Sequencing-by-ligation, using the SOLiD DNA sequencing platform
Figure 27:	Principle of nucleic acid extraction
Figure 28:	DNA extraction kit QIAamp®
Figure 29:	QIAamp [®] Spin Procedure
Figure 30:	The exponential amplification of the gene in PCR
Figure 31:	BIO RAD T100 TM Thermal Cycler
Figure 32:	Amplification program for both exon 2 and exon 3
Figure 33:	The amplified products of exon 2 and exon 3
Figure 34:	QIAquick® PCR Purification Kit
Figure 35:	The QIAquick® spin column and 2 ml collection tube
Figure 36:	The QIAquick purification Procedure
Figure 37:	Purified DNA appears as single bands on the gel
Figure 38:	Cycle Sequencing program
Figure 39:	Diagram of dye terminator Cycle Sequencing
Figure 40:	(A) Centri-Sep column before hydration (B) Centri-Sep column after addition of 800 µl of nuclease free water
Figure 41:	Application of the completed DyeDeoxy terminator reaction mixture
Figure 42:	Four bases detected and distinguished in one capillary injection

Figure 43:	Capillary array: 8 capillaries/ array	
Figure 44:	POP-7 polymer pouch	
Figure 45:	96-well plate Retainer and Base Set	
Figure 46:	The ABI 3500 Genetic Analyzer and the ABI 310 Genetic Analyzer	
Figure 47:	Chromatogram shows c17-6T>A heterozygous, c.36 G>A heterozygous and c.187+11T>C homozygous in exon 2 of <i>INS</i> gene, respectively in the cases	
Figure 48:	Chromatogram shows c17-6T>A heterozygous and c.187+11T>C heterozygous in exon 2 of <i>INS</i> gene, respectively in the cases	
Figure 49:	Chromatogram shows c17-6T>A heterozygous and c.187+11T>C homozygous in exon 2 of <i>INS</i> gene, respectively in the controls	
Figure 50:	Chromatogram shows c.*9C>T heterozygous and c.*22A>C heterozygous in exon 3 of <i>INS</i> gene, respectively in the cases	
Figure 51:	Chromatogram shows c.*22 A>C heterozygous in exon 3 of <i>INS</i> gene in the controls	
Figure 52:	c17-6T>A variant in exon 2 of <i>INS</i> gene (A) TT genotype (B) TA genotype (C) AA genotype	
Figure 53:	c.187+11T>C variant in exon 2 of <i>INS</i> gene (A) TC genotype (B) CC genotype	
Figure 54:	c.36G>A variant in exon 2 of <i>INS</i> gene (A) GG genotype (B) GA genotype	
Figure 55:	c.*22A>C variant in exon 3 of <i>INS</i> gene (A) AA genotype (B) AC genotype (C) CC genotype	
Figure 56:	c.*9C>T variant in exon 3 of <i>INS</i> gene (A) CC genotype (B) CT genotype	

Introduction

Monogenic diabetes is a heterogeneous group of disorders characterized most often by pancreatic beta-cell dysfunction as a result of a single gene mutation. Monogenic subtypes include neonatal diabetes that is either permanent or transient (PNDM/TNDM) and maturity onset diabetes of the young (MODY) (*Rubio-Cabezas and Argente*, 2008; Edghill et al., 2010; and Schwitzgebel, 2014).

Over the last decade the insight into the causes of neonatal diabetes has greatly expanded. Neonatal diabetes was once considered a variant of type 1 diabetes that presented early in life. Studies in understanding of this disorder have established that neonatal diabetes is not an autoimmune disease, but rather is a monogenic form of diabetes resulting from mutations in a number of different genes encoding proteins that play a key role in the normal function of the pancreatic beta-cell (*Stoy et al.*, 2010; and American Diabetes Association, 2014).

Mutations in the genes encoding the ATP-sensitive potassium channel (K_{ATP}) subunits [Potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) encoding Kir6.2, ATP-binding cassette transporter subfamily C member 8 (ABCC8) encoding SUR1] and in the gene encoding insulin (INS) account for most cases of PNDM/monogenic diabetes of infancy [MDI] (Russo et al., 2011; and American Diabetes Association, 2014).

As in monogenic diabetes a single gene mutation decides about the disease phenotype, it is possible to establish a specific diagnosis based on a DNA analysis in a considered patient. The search for a mutation is typically performed by automated sequencing. Making such a diagnosis usually has significant clinical importance as it may influence diabetes treatment, explain pleiotropic features and define the prognosis in the

examined subject as well as in other family members (*Ellard et al.*, 2008; and Rubio-Cabezas et al., 2011).

Aim of the work

This study aimed to investigate the genetic variations in the coding region and intronic boundaries of *INS* gene and their genotype phenotype correlation in a group of Egyptian PNDM infants with onset in the first 12 months of age.

Chapter 1

Permanent Neonatal Diabetes Mellitus

Neonatal diabetes (ND) is a monogenic form that is usually defined as overt diabetes diagnosed during the first 6 months of life (*Hussain et al.*, 2013). The disease can be clinically subdivided into transient (TNDM) and permanent (PNDM) forms depending on whether or not insulin dependence resolves in infancy (*Garin et al.*, 2012).

Monogenic diabetes is a result of a single gene mutation at different allelic loci and does not involve an environmental component in disease formation as with polygenic forms (*Rubio-Cabezas and Argente*, 2008). PNDM is caused by mutations affecting genes that play a critical role in the development, survival and function of pancreatic β -cells (*Miki et al.*, 2001; and Rubio-Cabezas et al., 2011).

Incidence of PNDM

PNDM is a rare condition with a reported incidence of approximately 1: 200,000 births in Caucasian populations (*De Franco et al.*, 2013).

Diagnosis of PNDM

Neonatal diabetes mellitus presents as hyperglycemia, failure to thrive and, in some cases, dehydration and ketoacidosis, which may be severe with coma in a child within the first months of life (*Polak and Cavé*, 2007).

Almost two-thirds of the infants diagnosed in the first 6 months were born small for gestational age (SGA), in contrast to 15% of those presenting later (*Iafusco et al.*, 2002). Because insulin exerts potent growth-promoting effects during intrauterine development (*Gicquel and Le Bouc*, 2006), a low birth weight might reflect reduced insulin secretion by the fetal pancreas suggesting a more precocious damage to