بِسْمِ اللَّهِ الرَّحْمُنِ الرَّحِيمِ هَا كُلُّهُ اللَّهُ اللَّهُ الْاَ عِلْمَ لَنَا إِلاَّ عَلْمَ لَنَا إِلاَّ عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

سورة البقرة، آية 32

Validity of Using Newly Introduced Thermoplastic Material in Fabrication of a Telescopic Denture: (Finite Element Stress Analysis)

A Thesis Submitted to Faculty of Oral and Dental Medicine,

Cairo University , In Partial Fulfillment of the Requirement of Master Degree

in Dental Material Science

By

Mai Uthman Hamzah

B.D.S (2005)

University of Khartum - Sudan

Department Of Biomaterials

Faculty of Oral and Dental Medicine

Cairo University

Supervisors

Prof. Dr. Azza Abdel Zaher Hashem

Professor of Dental Materials

Biomaterials Department,

Faculty of Oral and Dental Medicine,

Cairo University

Dr. Dalia Mohamed Abdel Hamid

Lecturer of Dental Materials

Biomaterials Department,

Faculty of Oral and Dental Medicine,

Cairo University

Dr. Tamer Moneer Nassif

Lecturer of Computer and Software

Faculty of Engineering,

Misr University for Science and Technology

Acknowledgement

First, thanks to ALLAH, whose help is the main factor in accomplishing this work.

I would like to express my deep and sincere gratitude to **Prof. Dr.**Azza Abdel zaher Hashem, Professor of Dental Materials, Biomaterials

Department, Faculty of Oral and Dental Medicine, Cairo University for her valuable remarks and vast knowledge. Really, she gave me the honor being my supervisor.

My sincere thanks and appreciation to **Dr. Dalia Mohamed Abdel Hamid,** Lecturer of Dental Materials, Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University for her guidance, instructive discussion, unlimited advice, precious help and her continuous and meticulous supervision.

My sincere thanks and great appreciation to **Dr. Tamer Nassif**Lecturer of Computer and Software, Faculty of Engineering, Misr University for
Science and Technology for giving me the privilege of being under his
supervision. His great help and unforgettable support were of paramount
importance for the initiation and progress of this work.

Sincere thanks to **Prof. Dr. Nadia Amin Bader,** Professor of Dental Materials, Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University for her kind suggestions, counseling, cooperation and scientific supervision during early stage of this study.

I would like to send my deep thanks to **Dr. Amr Hosny Elkhadem**Lecturer of Prosthodontics Department, Faculty of Oral and Dental
Medicine, Cairo University.

I would like to thank **Eng. Ahmad sami mahammad**Mechanical Engineering Manager of EMAG for his effort to provide facilities on doing this work

I would like to send my deep thanks to **Dr.Wael Abdel razeg**Assistant Lecturer of Prosthodontics Department, Faculty of Oral and Dental Medicine, Cairo University.

DEDICATION

To my Husband,

To my family,

To my friend s.

LIST OF CONTENTS

TITLE	Page No
List of Tables	II
List of Figures	III
List of Abbreviations	VII
I- Introduction	1
II- Review of Literature	3
III- Aim of Study	20
IV- Materials and Methods	21
V- Results	
IV- Discussion 73	
VI- Summary& Conclusions	80
VII- References	84
Arabic Summary	

List of Tables

Table	Title	Page
		No
Table 1.	Materials properties of the various supporting structures	29
	used in this study	
Table 2.	Materials properties of the telescopic over dentures	29
	components in the different models	
Table 3.	Detailed description of the investigated materials	35
Table 4.	Values of Compression and tensile stresses (MPa):	69
Table 5.	Fracture load (N) of both groups	70
Table 6.	Site of fracture line in telescopic over dentures formed	71
	from conventional heat cured acrylic resin and Co-Cr	
	alloy framework	
Table 7.	Site of fracture line in telescopic over dentures formed	71
	from conventional heat cured acrylic resin and flexible	
	acetal framework	

List of Figures

Figure	Title	Page
		No
Figure 1.	Increasing number of calculation points increases	14
	accuracy of FEA	
Figure 2.	Schematic diagram of the main steps involved in finite-	16
	element modeling	
Figure 3.	The step of thresholding	22
Figure 4.	The final model carried out by mimics	23
Figure 5.	curves representing the mandibular body, denture base	24
	and teeth	
Figure 6.	The basic curves from which mandibular body, denture	24
	base and teeth as well as the framework are separately	
	connected	
Figure 7.	(a) Mandibular body, (b) implant positions represented	25
	by four circles	
Figure 8.	Denture base and teeth	26
Figure 9.	Framework	27
Figure 10.	All components connected together to produce the final	27
	model	
Figure 11.	Force application	30
Figure 12.	Restraints of model	31
Figure 13.	Meshing of model	32

Figure 14.	First technique of Stress analysis	33
Figure 15.	Second technique of Stress analysis	34
Figure 16.	Adapted wax on the alveolar ridge	36
Figure 17.	Addition silicon impression material simulating the oral	37
	mucosa	
Figure 18.	Dental stone working cast	37
Figure 19.	Framework wax pattern	39
Figure 20.	Spruing of the framework wax pattern	39
Figure 21.	Wax elimination	39
Figure 22.	Acetal resin crystals packed in metallic cartilage	41
Figure 23.	Temperature adjustment of the Thermopress 400	41
	injection device	
Figure 24.	Processing steps of the flexible acetal resin telescopic	42
	over denture framework. (A): Injection device loaded	
	with acetal resin cartilage. (B): Injection device loaded	
	with the metallic flask. (C): Opening of the flask. (D):	
	Over denture framework after opening the flask	
Figure 25.	Finished and polished pink acrylic resin telescopic over	44
	denture with ivory flexible acetal resin framework (test	
	group)	
Figure 26.	Sprued wax pattern for the construction of Co-Cr alloy	46
	framework	
Figure 27.	Finished and polished pink acrylic resin telescopic over	46
	dentures with Co-Cr alloy framework (control group)	
Figure 28.	A copper cast	47

Figure 29.	Universal testing machine	48
Figure 30.	Maximum Von mises in heat cured acrylic resin	49
Figure 31.	Maximum Von mises in telescopic overdenture made	50
	from AR+(Co-Cr)alloy framework	
Figure 32.	Maximum Von mises in telescopic overdenture made	51
	from Ar+Acetal framework	
Figure 33.	Displacement of telescopic denture made from AR	52
	+Acetal framework	
Figure 34.	Displacement of telescopic denture e made from	53
	AR+(Co-Cr)alloy framework	
Figure 35.	Displacement of heat cure acrylic resin	54
Figure 36.	Maximum Von mises stresses in AR +Acetal framework	55
	supported by bone	
Figure 37.	Maximum Von mises in AR +Acetal framework	56
	supported by copper model	
Figure 38.	Maximum Von mises in AR+ Co-Cr alloy framework	57
	supported by bone	
Figure 39.	Maximum Von mises in AR+Co-Cr alloy framework	58
	supported by copper model	
Figure 40.	Maximum Von mises in AR+Acetal framework	59
	supported by bone	
Figure 41.	Maximum Von mises in AR+ Acetal framework	60
	supported by copper model	
Figure 42.	Maximum Vonmises in AR+Co-Cr framework	61
	supported by bone	
Figure 43.	Maximum vonmises in AR+Co-Cr framework	62

	supported by copper model	
Figure 44.	Displacement of AR+acetal framework supported by	63
	bone	
Figure 45.	Displacement of AR+acetal framework supported by	64
	copper model	
Figure 46.	Displacement of AR+Co-Cr alloy framework supported	65
	by bone	
Figure 47.	Displacement of AR+Co-Cr alloy framework supported	66
	by copper	
Figure 48.	Compressive Stress in all models	67
Figure 49.	Tensile Stress in all models	68
Figure 50.	Bar chart of the mean fracture loads (N) of both	71
	telescopic over denture groups	
Figure 51.	Fracture line adjacent to abutment	72
Figure 52.	Separation of (AR)	72
Figure 53.	Fracture line over abutment and framework in (a and b)	72
Figure 54.	Fracture of acrylic resin	

List of Abbreviations

AR	Acrylic resin
⁰ C	Centigrade
cm	Centimeter
Со	Cobalt
Cr	Chromium
FEA	Finite element analysis
FEM	Finite element method
g	Gram
h	Hour
min	Minute
mm	Millimeter
mm/min	Millimeter/minute
MPa	Mega Pascal
N	Newton
PMMA	Poly methyl matehacrylate
RPDs	Removable partial dentures
RCDs	Removable complete dentures
S	Second
У	Year
2-D	Tow-Dimensional
3-D	Three-Dimensional

I. Introduction

Polymethyl methacrylate (PMMA) was introduced in 1937. Since then, it became the most popular polymer material used in dentistry. The low cost, good aesthetics, ease of fabrication, manipulation and polishing has made PMMA a preferred denture base material⁽⁵²⁾.

With increasing dental awareness and elderly population, it is reasonable to expect that more and more patients will require various dental prosthetic treatment options. Classic removable dentures are still an important treatment option for completely or partially edentulous patients. However, telescopic dentures with the aid of its retentive capacity provide a more acceptable prosthetic treatment. Conventionally, telescopic dentures are made of acrylic resin and metal framework to ensure good aesthetics and mechanical properties ⁽⁷⁾.

An optimum restoration is dependent on the clinicians' skills in the selection of material type and restoration design for each clinical situation. The fabrication of prosthesis for completely or partially edentulous arches encounters special challenges when soft tissue and bony undercuts interfere with various paths of placement. Tilted teeth and deranged occlusion are also present further complicating factors for treatment planning

Recent advancements in material science motivated by the increased patient's esthetic demands and anxiety due to metallic allergies and metallic bad esthetics lead to the development of metal-free prosthesis. Flexible denture base materials have been developed in1950 and underwent several improvements to meet such demands ⁽⁵⁾. However, scarce information is available on the stress distribution encountered when these flexible materials

are used in combination with conventional acrylic resin complete over dentures.