

PRODUCTION DATA ANALYSIS TECHNIQUES FOR SHALE GAS RESERVOIRS: COMPARISON STUDY

By

Shams Noeman Mohamed Coutry

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

PRODUCTION DATA ANALYSIS TECHNIQUES FOR SHALE GAS RESERVOIRS: COMPARISON STUDY

By **Shams Noeman Mohamed Coutry**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Ahmed Hamdy El-Banbi

Professor
Petroleum Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Hamdy El-Banbi

Professor
Petroleum Engineering Department
Faculty of Engineering, Cairo University

PRODUCTION DATA ANALYSIS TECHNIQUES FOR SHALE GAS RESERVOIRS: COMPARISON STUDY

By **Shams Noeman Mohamed Coutry**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Approved by the
Examining Committee

Prof. Dr. Mohamed Helmy Sayyouh, Thesis Main Advisor

Prof. Dr. Ahmed Hamdy El Banbi, Advisor

Prof. Dr. Mahmoud Abu El Ela Mohamed, Internal Examiner

Prof. Dr. Mohamed Ahmed Samir Bebrz, External Examiner

Operations Manager at Sahara Petroleum Services

Engineer's Shams Noeman Coutry

Name:

Date of Birth: 27 - 1 - 1993 **Nationality:** Egyptian

E-mail: shams_noman@hotmail.com

Phone: +201114301156

Address: 12 B., St. **Registration** 1 - 10 - 2014

Date:

Awarding 2018

Date:

Degree: Master of Science **Department:** Petroleum Engineering

Supervisors:

Prof. Dr. Mohamed Helmy Sayyouh Prof. Dr. Ahmed Hamdy El Banbi

Examiners:

Prof. Dr. Mohamed Ahmed Samir Bebrz (External examiner)

- Operations Manager- Sahara Petroleum Services

Prof. Dr. Mahmoud Abu El Ela Mohamed (Internal examiner)
Prof. Dr. Mohamed Helmy Sayyouh (Thesis main advisor)

Prof. Dr. Ahmed Hamdy El Banbi (Advisor)

Title of Thesis:

Production Data Analysis Techniques for Shale Gas Reservoirs: Comparison Study

Key Words:

Production Data Analysis; Shale Gas Prediction; Shale Gas History Match, Shale Gas Reservoirs.

Summary:

The main objective of this work is to know the best method to use in shale gas production data analysis and in forecasting. The best method is known using a developed program. The developed program is verified using many comparison cases from Eclipse. The program was then used on actual field data.

Acknowledgments

I would like to thank Cairo University for giving me the opportunity to conduct this thesis. I would especially like to thank my mentor, advisor Dr. Ahmed Hamdi El-Banbi for his support, willing to help and sharing his experience. He also provided me with the required data. It has been a wonderful opportunity to work with him.

I also would like to thank Dr. Mohamed Helmy Sayyouh for helping me in completing my work and guiding me to complete the last steps in my thesis.

I would specially thank Dr. Mahmoud Abu El Ela for his effort in guiding me in writing my thesis.

Finally, I want to thank Dr. Mohamed Samir for being a part of the committee.

I greatly appreciate all those people who have helped me along the way; this research and this experience would have been worse off without your support.

Dedication

My Parents & My Brother,

The purest hearts ever. I would have done nothing without your support, you taught me to trust in Allah and believe in hard work

My Love.

Thanks for all your help and encouragement. I would have done nothing without your motivation.

Thank You All For Being in My Life

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	VI
NOMENCLATURE	
ABSTRACT	
CHAPTER 1: INTRODUCTION	1
CHAPTER 2 : LITERATURE REVIEW	4
2.1 Shale Gas Reservoirs	4
2.2 PRODUCTION DATA ANALYSIS METHODS	6
2.2.1 Constant Bottom-hole Pressure Methods	7
2.2.2 Variable Pressure and Variable Rate Methods	9
2.3 Shale Gas Analysis	9
2.3.1 Methods Based on Analytical Solutions	
2.3.2 Methods Based on Correlations	
2.3.3 Empirical Methods	
2.3.4 Methods Based on Simulation	
2.3.5 Methods Based on Semi-analytical Solution	
2.3.6 Program Creation	
2.3.7 Methods Based on Methodology	
2.4 Previous Comparisons for the Production Data Analysis Tec	-
THE AREA OF SHALE GAS RESERVOIRS	
2.5 CONCLUDING REMARKS	19
CHAPTER 3: STATEMENT OF PROBLEM, OBJECTIVE AND	
METHODOLOGY	20
3.1 STATEMENT OF PROBLEM	20
3.2 Objective	20
3.3 METHODOLOGY	20
CHAPTER 4: PROGRAM DEVELOPMENT	22
4.1 Introduction	22
4.2 Program Structure	22
4.3 PROGRAM SPREAD SHEETS	
4.3.1 Arps' (1945)	
4.3.2 Fetkovich (1980)	
4.3.3 Fraim and Wattenbarger (1987)	30
4.3.4 Modified Hyperbolic Decline Method (1988)	33
4.3.5 El-Banbi and Wattenbarger (1998) at Constant Pressure	35

4	.3.6 El-Banbi and Wattenbarger (1998) at Constant Rate	39
4	.3.7 Power Law Decline Method (2008)	43
	.3.8 Bello and Wattenbarger (2009) Constant Pressure	
4	.3.9 Bello and Wattenbarger (2009) Constant Pressure	46
CHA	PTER 5 : PROGRAM VALIDATION	47
5.1	Introduction	47
5.2	CASE 1: LINEAR CONSTANT PRESSURE CLOSED RESERVOIR	47
5.3	CASE 2: RADIAL CONSTANT PRESSURE CLOSED RESERVOIR	53
5.4	CASE 3: LINEAR CONSTANT RATE CLOSED RESERVOIR	59
5.5	CONCLUDING REMARKS	63
СНА	PTER 6: RESULTS AND DISCUSSION	64
6.1	Introduction	64
6.2	STATISTICS OF THE DATA	64
6.3	WELL NAME: 1	67
6.4	WELL NAME: 2	73
6.5	WELL NAME: 3	79
6.6	DISCUSSION	85
CHA	PTER 7 :CONCLUSIONS AND RECOMMENDATION	95
7.1	CONCLUSIONS	95
7.2	RECOMMENDATIONS	96
REFI	ERENCES	97
APPE	ENDIX A DESCRIPTION OF THE LAPLACE TRANSFORM: S	OLUTION
	THE DIFFUSIVITY EQUATION	

List of Tables

Table 2. 1: Comparison of the advantages and limitations of methods based on	
analytical solutions	11
Table 2. 2: Comparison of the advantages and limitations of empirical methods	14
Table 2. 3: Comparison of the advantages and limitations of the methods based on	
semi-analytical solution	17
Table 4. 1: Input data and model parameters used in the program	22
Table 5. 1: Eclipse data (gas reservoir data and fluid properties) for Case 1	48
Table 5. 2: Program results (gas reservoir size and OGIP) for Case 1	49
Table 5. 3: Eclipse data (gas reservoir and fluid properties) for Case 2	54
Table 5. 4: Program results (gas reservoir size and OGIP) for Case 2	55
Table 5. 5: Eclipse data (gas reservoir and fluid properties) for Case 3	60
Table 5. 6: Program results (gas reservoir size and OGIP) for Case 3	61
Table 6. 1: The input data for Gray's correlation to convert THP to BHP	64
Table 6. 2: Output data of Well 1 of the nine different methods at constant pressure.	70
Table 6. 3: Output data of Well 1 of the nine different methods at constant rate	72
Table 6. 4: Output data of Well 2 of the nine different methods at constant pressure.	76
Table 6. 5: Output data of Well 2 of the nine different methods at constant rate	78
Table 6. 6: Output data of Well 3 of the nine different methods at constant pressure.	82
Table 6. 7: Output data of Well 3 of the nine different methods at constant rate	84
Table 6. 8: Summary table for the 38 wells of the mean absolute deviation percent of	f
the methods based on constant pressure	
Table 6. 9: Summary table for the 38 wells of the mean absolute deviation percent of	
the methods based on constant rate	91

List of Figures

Figure 1.	1: Hydrocarbon basin with shale potential in Egypt's Western Desert region
E' 1	(After IEA)
Figure 1.	2: Recoverable shale gas reserve of Egypt and the surrounding countries (After EIA)
Figure 1.	3: North America shale plays (After EIA, 2015)
_	1: Schematic view of gas-molecule locations in a small part of pore system
8	including kerogen
Figure 2.	2: Example of adsorbed gas around a rock surface (after Chen,2017)5
	3: Arps's three types of decline and their equations on semi-log plot after
1 18410 2.	Arps' (1945)
Figure 2	4: Fetkovich Type Curves after Fetkovich (1980)
-	5: Side view of Linear Model (Rectangular Reservoir) with and without
1 15010 2.	convergence skin
Figure 2	6: Loss-ratio is assuming a power law function at early times and becomes
1 15010 2.	constant at late time after Ilk et al. (2008).
Figure 2	7: Different shape of Langmuir isotherm used to simulate production data
1 iguic 2.	after Lane and Watson (1989)
Figure 2	8: The result of the nearly linear shape of the Langmuir isotherm after Lane
riguic 2.	and Watson (1989)
Figure 2	9: The result of the nonlinear shape of the Langmuir isotherm after Lane and
riguic 2.	Watson (1989)
Figure 2	10: Comparison of Kanfar and Wattenbarger for the production data anlayis
riguic 2.	techniques in the area of shale gas analysis
Figure 3	1: Methodology flow chart
_	1: Program structure
	2: Flow chart of Arps' method
	3: Flow chart of Fetkovich method
-	4: Flow chart of Fraim and Wattenbarger method 32
_	5: Flow chart of the Modified Hyperbolic Decline method
	6: Flow chart of the Modified Tryperbone Decline method34
	7: Flow chart of El-Banbi and Wattenbarger constant rate method42
	8: Flow chart of Power Law Decline method
	9: Flow chart of Bello and Wattenbarger constant pressure method455
_	10: Flow chart shows of Bello and Wattenbarger constant rate method466
-	1: Simulation grid of linear constant pressure gas reservoir (Case 1)48
-	
rigule 3.	2: The matching of the simulated data from Eclipse and the calculated data
Eigung 5	from El-Banbi and Wattenbarger method for gas reservoir (Case 1)50
Figure 5.	3: The matching of the simulated data from Eclipse and the calculated data from Palls and Wetterhorger method for gas recognizin (Case 1)
Diama 5	from Bello and Wattenbarger method for gas reservoir (Case 1)
Figure 5.	4: The matching of the simulated data from Eclipse and the calculated data
D: 5	from Arps' method for gas reservoir (Case 1)
Figure 5.	5: Comparison of the simulated data from Eclipse and the calculated data
D: 7	from Fetkovich method for gas reservoir (Case 1)
Figure 5.	6: The matching of the simulated data from Eclipse and the calculated data
г	from Fraim and Wattenbarger method for gas reservoir (Case 1)
Figure 5.	7: The matching of the simulated data from Eclipse and the calculated data
	from Power Law Decline method for gas reservoir (Case 1)

Figure 5. 8:	Comparison of the simulated data from Eclipse and the calculated data
	from Modified Hyperbolic method for gas reservoir (Case 1)53
Figure 5. 9:	Simulation grid of radial constant pressure reservoir (Case 2)54
Figure 5. 10	: The matching of the simulated data from Eclipse and the calculated data
<u> </u>	from Arps' method for constant pressure radial gas reservoir (Case 2)56
Figure 5, 11	: The matching of the simulated data from Eclipse and the calculated data
118010 5.11	from Fetkovich for constant pressure radial gas reservoir (Case 2)56
Eiguro 5 12	: The matching of the simulated data from Eclipse and the calculated data
11guite 3. 12	•
	from Fraim and Wattenbarger method for constant pressure radial gas
F: 5.40	reservoir (Case 2)
Figure 5. 13	: The matching of the simulated data from Eclipse and the calculated data
	from Power law loss-ratio method for constant pressure radial gas
	reservoir (Case 2)
Figure 5. 14	: The matching of the simulated data from Eclipse and the calculated data
	from Modified Hyperbolic Decline for constant pressure radial gas
	reservoir (Case 2)
Figure 5. 15	: The matching of the simulated data from Eclipse and the calculated data
8	from EL-Banbi and Wattenbarger for constant pressure radial gas
	reservoir (Case 2)
Figure 5 16	: The matching of the simulated data from Eclipse and the calculated data
1 iguic 5. 10	from Bello and Wattenbarger for constant pressure radial gas reservoir
	(Case 2)
Eigung 5 17	
•	: Simulation grid of linear constant rate gas reservoir (Case 3)60
Figure 5. 18	The matching of the simulated data from Eclipse and the calculated data
	from El-Banbi and Wattenbarger method for gas reservoir (Case 3)62
Figure 5. 19	: The matching of the simulated data from Eclipse and the calculated data
	from Bello and Wattenbarger method for gas reservoir (Case 3)63
Figure 5. 20	: Comparison of the mean absolute deviation percent for the three
	validation case studies63
Figure 6. 1:	Ranges of days of the input data for the 38 wells
	Ranges of initial gas rate of the input data for the 38 wells66
	Ranges of initial THP of the input data for the 38 wells
	Input data of Well 1
_	Comparison of the actual data and the calculated data that is based on
1 1guic 0. 5.	constant pressure boundary of Well 1
Figure 6 6:	Comparison of the actual data and the calculated data (Fraim and
rigule 0. 0.	Wattenbarger (1987), El-Banbi and Wattenbarger (1998), Bello and
F' 67	Wattenbarger (2009)) of Well 1
Figure 6. /:	Comparison of the actual data and the calculated data that is based on
	constant rate boundary of Well 169
	Input data of Well 2
Figure 6. 9:	Comparison of the actual data and the calculated data that is based on
	constant pressure boundary of Well 2
Figure 6. 10	: Comparison of the actual data and the calculated data (Fraim and
_	Wattenbarger (1987), El-Banbi and Wattenbarger (1998), Bello and
	Wattenbarger(2009)) of Well 274
Figure 6, 11	: Comparison of the actual data and the calculated data that is based on
	constant rate boundary of Well 274
Figure 6 12	: Input data of well 3
	: Comparison of the actual data and the calculated data that is based on
1 1guie 0. 13	
	constant pressure boundary of Well 380

Figure 6. 14: Comparison of the actual data and the calculated data (Fraim and
Wattenbarger, El-Banbi and Wattenbarger, Bello and Wattenbarger) of
Well 380
Figure 6. 15 Comparison of the actual data and the calculated data that is based on
constant rate boundary of Well 381
Figure 6. 16: Comparison of different method of constant pressure in Group A, B, and
C85
Figure 6. 17: Comparison of different method of constant rate in Group A, B, C85

Nomenclature

Abbreviations

EIA Energy Informative Administrator

EUR Estimate Ultimate Recovery

IEA International Energy Agency

SEPD Stretched Exponential Production Decline

SRV Stimulated Reservoir Volume

USRV Unstimulated Reservoir Volume

VBA Visual Basic

YM-SEPD Modified Stretched Exponential Production Decline

Symbols

Ac Cross sectional area, ft²

B Oil formation volume factor, rbbl/stb

b The degree of curvature of the line, dimensionless

cg Gas compressibility, psi⁻¹

 c_t Total compressibility, psi⁻¹

D Loss ratio, $days^{-1}$

 D_i Initial loss ratio, days⁻¹

 D_{∞} Loss ratio at $t=\infty$, days⁻¹

G Original gas in place, mmscf

h Thickness, ft

 I_0 Modified Bessel function of the first kind of order zero

 I_1 Modified Bessel function of the first kind of order one

 J_g Productivity index of gas reservoir, Mscf.cp/day/Psi²

k Formation permeability, md

 k_f Hydraulic fracture permeability of dual porosity, md

 k_0 Modified Bessel function of the second kind of order zero

 k_1 Modified Bessel function of the second kind of order one

L Distance to the boundary, ft

m(p) Real gas pseudo-pressure, psi²/cp

 $m(p_{wf})$ Real gas pseudo-pressure at bottom-hole flowing pressure, psi²/cp

 $m(p_i)$ Real gas pseudo-pressure at initial pressure, psi²/cp

 m_{wDL} Real gas dimensionless pseudo-pressure

N Original oil in place, MMSTB

n Time exponent
P Pressure, psia

p Average reservoir pressure, psia

 p_i Initial reservoir pressure, psia

 p_d Dimensionless pressure

 p_{sc} Pressure at standard condition, psia

 p_{wf} Bottom-hole flowing pressure, psia p_{wDI} Dimensionless bottom-hole pressure

 p_{wDL} Dimensionless bottom-hole press q_a Gas production rate, mmscfd

 q_g Gas production rate, mmscfd

 q_{gi} Initial gas production rate, mmscfd

r Radius, ft

 r_d Dimensionless radius

 r_e Reservoir outer radius, ft

 r_{ed} Dimensionless reservoir radius

 r_w Wellbore radius, ft

s Skin factor

SG Specific gravity

t Time, days

 t_a Material balance time, days

 t_d Dimensionless time T Temperature, $^{\circ}$ R

 T_{sc} Temperature at standard condition, ° R

λ Interporosity flow coefficient

ω Storativity coefficient

Ø Porosity

Z Real gas compressibility factor

 Δp_{pwf} Normalized bottom-hole pressure, psi²/cp

μ Viscosity, cp

γ_g gas specific gravity

Abstract

There are several methods for production data analysis from shale gas reservoirs. In this study, nine different methods were used to analyze production data from 38 shale gas wells. The objective of this comparison study is to provide guidelines on which methods to use for production data analysis in shale gas wells. These nine methods include Arps' (1945), Fetkovich (1980), Fraim and Wattenberger (1987), Modified Hyperbolic (1988), El-Banbi and Wattenbarger (1998), Power Law Decline (2008), and Bello and Wattenbarger (2009). The variations of these methods to cover homogeneous, pseudo-steady state dual porosity, transient dual porosity, constant pressure and constant rate closed reservoirs are all considered in the comparison.

Production data from the 38 wells were categorized into three groups to cover the different conditions of observed rate and pressure variation. For every group of wells, half of the production history was history matched with all nine methods, and the other half of production history was predicted. The deviation between predicted production forecast and actual production was used to shed light on the applicability of each method of the nine for the three groups of wells.

The results indicate that the best constant pressure methods for most of the wells are Modified Hyperbolic and Power Law Decline with mean absolute deviation percent of 6% and 7.5%, respectively. In case of constant rate methods, the best method is found to be Bello and Wattenbarger with an average absolute error percent of 10%.

This study is an original contribution to provide guidelines to select the suitable production data analysis technique in the shale gas reservoir.