

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Control of a Switched Reluctance Generator for Variable-Speed Wind Energy Applications

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Electrical and Machines Engineering

Prepared by:

Eng. Mohamed Eladly Metwally Ahmed

M.Sc. in Electrical Power Engineering

Under Supervision of:

Prof. Dr. Ahmed Abd EL-Sattar Abd EL-Fattah

Faculty of Engineering - Ain Shams University

Prof. Dr. Naggar Hassan Saad

Faculty of Engineering – Ain Shams University

Cairo - Egypt 2018

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Control of a Switched Reluctance Generator for Variable-Speed Wind Energy Applications

Ph.D. Thesis By:

Eng. Mohamed Eladly Metwally Ahmed

M.Sc. in Electrical Power and Machines engineering

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Examination Committee

Title, Name and Affiliation	<u>Signature</u>
Prof. Dr.	
Department	
Faculty of Engineering, University	
Prof. Dr.	
Electrical Power & Machines Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Ahmed Abd EL-Sattar Abd EL-Fat-	
tah	
Electrical Power & Machines Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Naggar Hassan saad	
Electrical Power & Machines Department	
Faculty of Engineering, Ain Shams University	
	Date:

Cairo 2018

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Control of a Switched Reluctance Generator for Variable-Speed Wind Energy Applications

Ph.D. Thesis By:

Eng. Mohamed Eladly Metwally Ahmed

M.Sc. in Electrical Power and Machines engineering

A thesis Submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Supervision Committee

Title, Name and Affiliation	<u>Signature</u>
Prof. Dr. Ahmed Abd EL-Sattar Abd EL-Fat-	
tah	
Electrical Power & Machines Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Naggar saad Hassan	
Electrical Power & Machines Department	
Faculty of Engineering, Ain Shams University	

Date:

Cairo 2018

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirement for the Ph.D. degree in Electrical Engineering. The included work in this thesis has been carried out by the author at the Electrical Power and Machine department, Ain-Shams University. No Part of this thesis has been submitted for a degree or a qualification at other university or institute.

Name:	Mohamed Eladly Metwally
Signature:	
Date:	

ACKNOWLEDGMENT

Thanks to ALLAH who gives us the power and hope to succeed.

I would like to express my deepest sincere and appreciation to **Prof. Dr. Ahmed Abd EL-Sattar- Ain Shams University** for his excellent supervision, encouragement and endless support during the research period.

My deep gratitude is also dedicated to **Prof. Dr. Naggar Hassan** saad Ain Shams University for his constructive guidance, and warm encouragement during preparing this work, without which the present study would not have been carried out.

My thanks are also due to all the staff of the Electric Power and Machines Department in El-Shorouk Academy for their encouragement and support.

Last but not least, my sincere gratitude is presented to my family and particularly I would like to thank and appreciate my **father**, **mother**, **sister**, **my wife** and **my children** for their support and patience.

Mohamed Eladly

ABSTRACT

Wind power technology, as the most competitive renewable energy technology, is quickly developing. The wind turbine size is growing and the grid penetration of wind energy is increasing rapidly. Currently, the growth on wind energy technology thrust more attentions on efficiency and system reliability. This mainly consists of a Switched Reluctance Generator (SRG) for supplying a grid system in wind energy. The SRG, which excludes permanent magnets, brushes with commutators, and rotor windings, could be a favorable wind system. It has several desired features, as a simple with solid structure, facility of maintenance, fault tolerance, and not be expensive. These features are suitable for generators in wind turbine. Nevertheless, in spite of all these useful features, the SRG has not been widely employed in wind applications. The most celebrated SRG disadvantages are its torque ripples with nonlinearity operation, which should be resolved to promote the SRG application in wind energy conversion systems (WECS).

Toque ripple minimization control algorithm of four phases 8/6 poles SRG is carried out by employing Artificial Neural Network (ANN) control. This control technique is based on optimum profiling of the currents at overlapping periods. The research, also, presents new Maximum Power Point Tracking (MPPT) for SRG by modification of classical Hill Climb Searching (HCL) technique using ANN which is investigated to emulate the controller (PI) for closed loop system at different wind speeds. Moreover, the SRG is connected with grid system by using a multi-level diode clamped inverter in order to reduce Total Harmonic Distortion (THD) and reduce the filter size. The results of simulation illustrate a good agreement and support the feasibility of the suggested torque ripple minimization and MPPT techniques.

This research investigates a new angle rotor position and generator speed estimator for the control of variable speed SRG which is developed for WECS in order to reduce total cost, simplify system structure and increase reliability. The rotor position is based on constant current per constant flux and its takes into consideration the linear characteristics of the

SRG when excitation current and flux linkages are small. The model has been investigated and simulated by MATLAB/SIMULINK for grid connected SRG.

In this work, STATCOM with UPFC are investigated to support the low voltage ride- through (LVRT) of WECS and to decrease the speed oscillations of SRG during fault conditions. Also, the performances of these compensators are compared with each other. STATCOM can only improve voltage after fault clearance at the terminals of WECS. Proportion-integral-derivative control of these two equipment scheme is employed, and the parameters of PID for each control are tuned by Firefly algorithm. This is investigated by using a new proposed weighted goal attainment method (WGAM) for achieving improved and fault-tolerant operation.

Table of Contents

ACKNOWLEDGMENT	i
ABSTRACT ii	
Table of Contents	iv
List of Figures	.vii
List of Tables	ix
List of Symbols	X
List of Abbreviations	
Chapter One Introduction and Literature Survey	1
1.1 General	
1.2 Problem Statement	
1.3 Thesis Objectives	
1.4 Thesis outlines	3
1.5 Background and Literature Survey	4
1.5.1 The artificial neural network	8
1.5.2 Particle Swarm Optimization (PSO)	8
1.5.3 Firefly Optimization Algorithm (FOA)	8
Chapter Two Switched Reluctance Generator Driven by Wind	
Turbine	10
Chapter Three Control of a Switched Reluctance Generator for W	'ind
Energy Applications	26
3.1 Introduction	. 26
3.2 Wind energy conversion system	. 26
3.2.1 Three phase Voltage Source Inverter (VSI):	27
3.2.2 Grid side converter (GSC)	28
3.3 Torque Ripple Control of SRG	28
3.3.1 Torque and current profiles strategy for torque ripple control .	29
3.3.2 Algorithm of current control	31
3.4 ANN for torque ripple control and MPPT	. 33

3.5 Summary	40
Chapter Four Sensor-less control with three phase MLI in a SF	RG
Driven by Wind	42
4.1 Introduction	42
4.2 Wind energy conversion system with multi-level inverter	42
4.2.1 Multilevel Inverter structures	42
4.2.2 Three phase seven level diode clamped multi-level inverte	er43
4.3 Sensor-less Control System of the SRG	48
4.3.1 Sensor-less Control System of the SRG based on inducta estimation	
4.4 Particle Swarm Optimization	52
4.5 Multi-Objective Particle Swarm Optimization to enhancement overall efficiency	
4.6 The Simulation Results	60
4.7 Summary	65
Chapter Five Improving of Voltage Control during Fault Ride	
through Capability of SRG Used In Wind Powe	r
Applications	68
5.1 Introduction	68
5.2 Grid code requirements	69
5.3 Over all Wind energy conversion system	69
5.4 Fire-Fly Algorithm	70
5.4.1 General	70
5.4.2 FA Advantages	71
5.4.3 Attractiveness of Firefly	72
5.4.4 Movement of the Fireflies	72
5.4.5 Objective Functions (F)	73
5.5 Unified Power Flow Controller	74
5.5.1 Control of UPFC	75
5.6 STATCOM	78
5.7 Simulation	78
5.8 Summary	87

Contents

Chapter Six Conclusions and contribution	88
6.1 Thesis Contributions	88
6.2 Conclusions	89
LIST OF PUBLICATIONS	91
REFERENCES	92
APPENDICES 100	
Appendix A: SRG Block diagram, Components and Par	
Appendix B: Implemented Algorithms	104
ملخص الرسالة	127

List of Figures

Figure No.	Caption	Page No.
Fig. 2-1 Four-phase 8/6-pole SRG		11
Fig. 2-2 Torque relationship between the	ne idealized inductance profile and the	phase
current	······	15
Fig. 2-3: basic configurations of WTs.		17
Fig. 2-4: Main elements of a two-blade	d HAWT	18
Fig. 2-5: Generic grid-connected geare		
Fig. 2-6: Wind turbine; (A) power curv	e and operational regions of a pitch-co	ontrolled;
(B) pitch angle control scheme		
Fig. 3-1: Schematic diagram of the ove		
Fig. 3-2: Circuit Diagram of Three pha	se VSI	27
Fig. 3-3: grid side converter		
Fig. 3-4: performance of generator pha-		
Fig. 3-5: performance of generator elec-		
Fig. 3-6: Contour function for profiling		
Fig. 3-7: closed loop control block diag		
Fig. 3-8: the output desired currents un		
Fig. 3-9: block diagram of SRG drive v		
Fig. 3-10: Power-speed characteristic o		
Fig. 3-11: Flowchart for MPPT techniq		
Fig. 3-12:The performance characterist		
generator inductances (mH), generator		
electrical torque (N m)		
Fig. 3-13: The DC output power from S		
speed variations		
Fig. 4-1: Three phase seven level diode		
Fig. 4-2: Three phase seven level diode		
output voltage waveforms. (b) Three pl		
Fig. 4-3: (a) Grid side voltage (V), (b)		
Fig. 4-4: Three phase VSI, (a) output v		
current		
Fig. 4-5: FFT Analysis of a three phase		
in percentage).		
Fig. 4-6: FFT Analysis of a three phase		
frequency Vs. Magnitude in percentage		
Fig. 4-7: sensor-less SRG system struct		
Fig. 4-8: (a) typical SRG characteristic		
<i>Ise</i> , (c) Phase current vs. rotor position		
machine		
Fig. 4-9: measured position angle and e		
Fig. 4-10: actual speed and estimated speed		
Fig. 4-11: Searching point modification		
Fig. 4-12: PSO General flow chart		56

List of Figures

	58
Fig. 4-14: Block diagram of SRG with MOPSO based controllers connect with grid	
	59
Fig. 4-15:a) the wind speed (m/sec)b) dc output power with wind speed ANN compare	ed
with MOPSO; b) generator speed by ANN compared with MOPSO	62
Fig. 4-16: The performance characteristics of the SRG under wind speed variations,	
wind speed (m/sec), generator inductances (mH), generator currents (A),	63
Fig. 4-17: the performance characteristics of the SRG under wind speed variations, win	ıd
speed (m/sec), DC output power from SRG (W) and electrical torque (N.m)	64
Fig. 4-18: electrical torque and generator speed (rpm) under wind speed variations6	
Fig. 5-1: LVRT requirements of Egypt grid code6	
Fig. 5-2: The proposed wind energy conversion scheme.	
Fig. 5-3: Flow chart of optimal voltage stability using the FA.	
Fig. 5-4: Typical schematic diagram of a UPFC	
Fig. 5-5: Shunt Converter configuration and the proposed control scheme	
Fig. 5-6: Series Converter configuration and the proposed PI control scheme	
Fig. 5-7: Schematic diagram of basic STATCOM	
Fig. 5-8: Effect of UPFC and STATCOM on terminal voltage during fault	
Fig. 5-9: Series injection in UPFC (a) voltage (pu), (b) reactive power (pu), (c) Series	š
reactive power between two buses (pu)	80
Fig. 5-10: STATCOM (a) voltage bus (pu) with injection current, (b) the quadrature	
current (pu) with reference quadrature current (pu)	
Fig. 5-11: The voltage sag under UPFC with different PID-controller	
Fig. 5-12: The voltage sag under STATCOM with different	
Fig. 5-13: output current of SRG during fault.	
Fig. 5-14: output voltage of SRG during fault	84
Fig. 5-15: Electrical torque of SRG during fault	85
Fig. 5-16: Rotor speed of SRG during fault	85
Fig. 5-17: four phase inductances of SRG during fault	
Fig. 5-18: four phase currents of SRG during fault	86

List of Tables

Table No.	Caption	Page No.
Table 2-1: The advantages and o	lisadvantages of HAWT and VAWT	16
Table 2-2 The classification of V	VT according to their capacity	19
Table 2-3 Comparison between	direct drive train and gear drive train	20
Table 3-1: The ANN data for lo	west MSE	34
Table 4-1: The possible switching	g states of diode clamped inverter	44

λ

List of Symbols

Step size parameter in firefly algorithm. α Weighting factor β β_o Absorption coefficient in firefly algorithm. Absorption coefficient in firefly algorithm. γ Efficiency η θ_{sk} The stroke-angle. е Generator back emf Ι Current. C_p The turbine power coefficient F Fitness function value. B the friction coefficient. K_d Derivative gain K_i Integral gain K_n Proportional gain

Generator phase flux linkage.

List of Symbols
N_{γ} The number of rotor poles
N_s The number of stator poles
P Dimension of search space
P_a Discovering probability in firefly algorithm.
ρ Air density.
v Velocity
V Voltage
r Distance between two fireflies
S Position of particle in PSO
w Weighting function
C Weighting coefficient
L Generator phase inductance
T_e Generator electrical torque
Lmax Aligned generator inductance
Lmin Unaligned generator inductance
C _p Coefficient of the wind turbine.
τ_r The rotor pole pitch