FEASIBILITY OF LEFT LOBE GRAFT IN ADULT LIVING DONOR LIVER TRANSPLANTATION

A thesis submitted for partial fulfillment of MD degree in GENERAL SURGERY

By

MOHAMMED MAMDOUH AHMAD ASAR

Assistant lecturer of surgical oncology

Faculty of Medicine Al-Azhar University

Supervisors

PROF. DR. AHMAD SAMY ELBALOULY

Professor of General Surgery Faculty of Medicine Al-Azhar University

PROF.DR.YUKIHIRO INOMATA

Professor and Chairman Department of Transplantation/Pediatric Surgery Kumamoto university - Japan

PROF.DR. MEDHAT MOHAMED RAMADAN

Professor and Chairman of Surgical Oncology Department Faculty of Medicine Al-Azhar University

PROF.Dr.MOHAMED MOHAMED EL-WAHSH

Prof. of HPB & Liver Transplant
Director of Liver Transplant Program
Faculty of Medicine
Al-Azhar University

PROF.DR. KHALED EISSA AMER

Consultant of HB & Liver Transplant
Dean of Armed Forces College of Medicine

Faculty of Medicine Al-Azhar University

دراسة جدوي استخداء النب الايسر في نقل الكرد من المتررع الدي بين البالغين

رسالة

مقدمة من الطبيب /محمد ممدوح أحمد عصر توطئة الحصول على درجة الدكتوراة فني الجراحة العامة

تحت إشراف

الأستاذ الدكتور / أحمد سامي البالولي

أستاذ الجراحة العامة وجراحة الأوراو

كلية الطبع – جامعة الأزمر

الأستاذ الدكتور / يوكيميرو اينوماتا

استاذ ورئيس قسو زراعة الكبد

كلية الطبع - جامعة كوماموتو - اليابان

الأستاذ الدكتور / مددت مدمد رمضان

أستاذ ورئيس قسو جراحة الأورام

كلبة الطبع – جامعة الأزمر

الأستاذ الدكتور / معمد معمد الوحش

أستاذ زرائمة الكبد والبنكرياس

كلية الطرب – جامعة الأزهر

الأستاذ الدكتور/ خالد غيسي عامر

استشاري جراحة وزراعة الكبد مدير كلية الطب بالقوات المسلحه

كلية الطبع جامعة الأزمر

Acknowledgement

First and foremost, I feel always indebted to ALLAH, the most kind and the most merciful, who guided and aided me to bring this work to light.

It gives me the greatest proud and glory to express my deepest gratitude and sincerest thanks to Prof. Dr AHMAD SAMY ELBALOULY, Professor of General Surgery, asurgical oncology, Faculty of Medicine, Al-Azhar University, for his sustained and uncut support throughout this thesis.

Words are not enough to express my greatest thanks and deepest appreciations to Prof. YUKIHIRO INOMATA, Professor & head of department of Pediatric surgery & Transplantation, Faculty of Medicine, Kumamoto University, for his comments, ideas, and constructive criticism. He gave me privilege to work under his supervision and valuable advices.

Very special thanks and very great proud should be offered to prof. Dr. MEDHAT MOHAMED RAMADAN, Professor & Head Of Department of Surgical Oncolgy, Faculty of Medicine, Al-Azhar University, for his effective and useful guideness and support.

Very special thanks and very great proud should be offered Tto PROF.MOHAMED MOHAMED EL-WAHSH Professor of Hepato-Pancreato-Biliary Surgery and Liver Transplant Faculty of Medicine Al-Azhar University, for his effective and useful guideness and support.

At last I can't express my feelings & deepest appreciaitions towards my god father prof. KHALED AMER Senior Consultant of Hepatobiliary Surgery & Liver Transplant & Dean of Armed Forces College of Medicine who taught me what does liver transplantation mean, I really owe him too much.

To My Beloved Family

Contents

Chapter	Page
1. Introduction and aim of the work	1
2. Surgical anatomy of the liver	4
3. Graft selection	24
4. Donor Morbidity	32
5. Small For Size Syndrome	41
6. Patients & Methods	61
7. Results	78
8. Discussion	87
9. Summary	92
10. References	93
11. Arabic summary	104

Tables

Table	Page	
1. SLV Formulas Studies	26	
2. Reported Donor Deaths	33	
3. Clavian Score Classification	35	
4. Donor Complication Associated with 3565 Living liver Donors		
5. Proposed Definitions for SFSS	41	
6. Pathogenesis of and strategies for small-for-size syndrome		
7. Patients Characteristics		
8. Donors Outcomes	80	
9. Recipients Outcomes	77	
10. SFSS Cases Analysis		
11. World Experience of LL LDLT	83	

Figures

Figure		
1.1	Liver anatomy	5
1.1	•	13
1.3	6	
1.4	Semischematic drawings of sagittal sections of a liver	14 22
1.4	1	
	Main variations of the hepatic duct confluence.	
2.1	Graft Selection Algorithm "Kyushu University"	27
2.2	Graft Selection Algorithm By Yamada et al.	28
3.1	Incidence Of Donor Morbidity according to graft type	40
4.1,4.2	Effect of Splenic Artery Occlusion	45
4.3	Histological Pattern of SFSS	46
4.4	Summary of Inflow Modulations	53
4.5	Inflow Modulation Kyoto Group	54
4.6	4.6 Reconstruction of MHV tributaries	
5.1	3D software modalities	64
5.2	Complicated right hepatic venous system	65
5.3	Complicated right hepatic venous system	65
5.4	Upper Midline Incision	66
5.5	Intraoperative Cholangiography	67
5.6	Hilar Dissection LLG	67
5.7	Demarcation Line	68
5.8	Transection Plane	68
5.9	Parenchymal Transection with Harmonic Scalple	69
5.10	Parenchymal Transection with Cusa & Irrigation cautery	69
5.11	Completion of Transection Before Graft removal	70
5.12	Removed Graft , Stump closure	71
5.13	Bile duct stump	71
5.14	Intraoperative Cholangiography Pre & Post Bile duct closure	72
5.15	Portal Vein Reconstruction	73
5.16	Hepatic Artery Reconstruction	74

5.17	Intraoperative Grey Scale US	74
5.18	8 Bile Duct Reconstruction	
5.19	Graft Repositioning	
5.20	Fixation of Graft to Abdominal wall	76
6.1	1-Year Survival Rate in relation to GRWR	81
6.2	1-Year Survival Rate in relation to MELD	83
6.3	GRWR & MELD in ≤0.7 Group	85
6.4	GRWR & MELD in 0.7-1.0 Group	85
6.5	GRWR & MELD in >1.0 Group	86
8.1	Innovated Graft Selection Algorithm	91

Abbreviations

Abbreviation	Meaning
3D-CT	Three Dimensional CT
ABO	Blood Type
AIH	Autoimmune Hepatitis
APOLT	Auxiliary partial orthotopic liver transplantation
BMI	Body Mass Index
CT	Computerized tomography
CUSA	Cavitron ultrasonic surgical aspirator
DDLT	Deceased donor liver transplantation
ERCP	Endoscopic retrograde cholangiopan-creatography
FAP	Familial Amyloid Polyneuropathy
FHF	Fulminant Hepatic Failure
GGT	Gamma Glutemyl Transpeptidase
GV	Graft Volume
НАТ	Hepatic Artery Thrombosis
НВО	Hyper Baric Oxygen
HBV	Hepatitis B Virus

НСС	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HPCS	Hemi-Porto-Caval-Shumt
IMC	International Medical Center, Cairo
INR	International Normalized Ratio
IVC	Inferior Vena Cava
LDLT	Living Donor Liver Transplantation
LHV	Left Hepatic Vein
LL	Left Lobe
LLD	Living Liver Donation
LLG	Left lobe Graft
LLI	Left Lobe + Caudate lobe
MDCT	Multi-Detector CT
MELD	Model of End-Stage Liver Disease
MEVIS	MEdical VISualisation
MHV	Middle Hepatic Vein
MMF	Mycophenolate Mofetil
MRCP	Magnetic resonance cholangio-pancreatography
PBC	Primary Biliary Cirrhosis
PSC	Primay Sclerosing Cholangitis
PVP	Portal Vein Pressure
RHV	Right Hepatic Vein
RL	Right Lobe
RLG	Right Lobe Graft
RLV	Remnant Liver Volume
SAE	Splenic artery Embolization
SLV	Standard Liver Volume
SFSG	Small For Size Graft
SFSS	Small For Size Syndrome
SLVR	Spleen Liver Volume Ratio

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

Living donor liver transplantation (LDLT) was first initiated in children in 1989 in response to a severe organ shortage from pediatric donors (Raia et al., 1989).

The indications for living donor liver transplantation (LDLT) have been successfully expanded from pediatric to adult cases especially in countries like Japan and other Asian countries where the availability of brain-dead donors is severely restricted. It has evolved to be an accepted and established alternative to deceased-donor liver transplantation (DDLT) in Western countries and is expected to minimize the mortality of patients awaiting transplantation (Fujita et al., 2000).

At the start of adult LDLT, left lobe (LL)-LDLT was the only option available because of the potential risk for the donor in right lobe (RL)-LDLT. However, the use of LL grafts for adults was severely limited due to their size limitation. Generally, a LL graft can provide only 30–50% of the required liver volume for an adult recipient, and has been thought to be too small for adult recipients to sustain their metabolic demand (Emond et al., 1996).

During this process, the graft type has shifted from the left side of the liver to the right side of the liver to overcome the problems encountered with "small-for-size grafts," that is, a <1.0% graft-to-recipient body weight ratio (GRWR). The use of "small-for-size grafts" leads to "small-for size syndrome," including poor bile production, delayed synthetic

function, prolonged cholestasis and intractable ascites, with subsequent septic complications and higher mortality (Kiuchi et al., 1999).

Graft size plays a role in determining outcomes after liver transplants, but it is not the only factor. The likelihood of small-for size syndrome is influenced not only by the size of the graft but also likely by other factors such as the degree of portal hypertension, MELD score, and spleen size. Perhaps a better term than small-for-size to describe this syndrome is small-for-need (Mark et al., 2009).

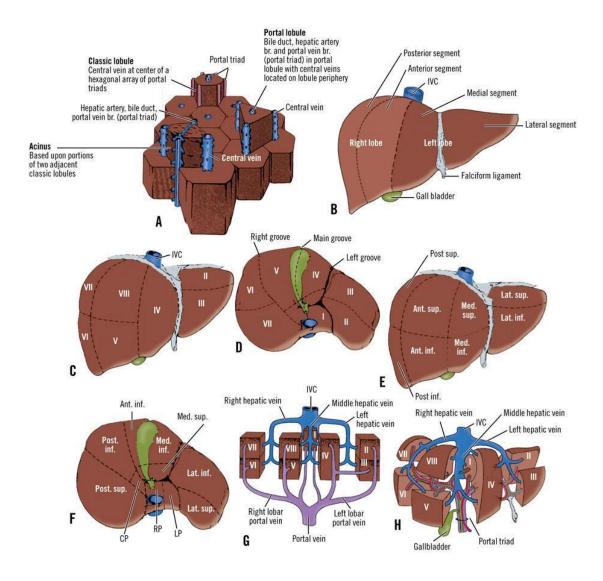
The crucial prerequisite to performing LDLT is a minimal morbidity and mortality risk to the healthy living donor. Unfortunately, sporadic donor deaths associated with RL donations have been reported in the United States (Miller et al., 2004) and Europe (Broering et al., 2004), as well as in Japan (Akabayashi et al., 2004). It is reported that operative mortality for the RL donor is estimated to be as high as 0.5–1% (Brown et al., 2003).

To minimize the risk to the donor, LL-LDLT could be an ideal option in adult-to-adult LDLT.

AIM OF THE WORK

The objective of this study is to retrospectively assess the feasibility of LLG as an option in the Adult Living Donor Liver Transplantation. The study aims to consider the anatomical advantages of the Left Lobe Graft, the safer Donor's hepatectmy and to propose criteria for Left Lobe Graft selection.

REVIEW OF LITERATURE I-SURGICAL ANATOMY OF THE LIVER


SURGICAL ANATOMY OF THE LIVER

The integration of hepatobiliary surgery and liver transplantation, coupled with advances in critical care of the patient afflicted with liver disease, has expanded the role of major hepatic resection (Fortner &Blumgart 2001) and permitted the routine application of partial-liver allografts derived from living or deceased donors to adults and children(Yersiz et al., 2003). In less than a decade, partial-liver allo-grafts have become the most common allograft for pediatric patients, (Marcos et al., 2000) whereas the application of partial-liver allografts to adults from living or deceased donors has dominated recent surgical interest in the transplantation community (Renz et al., 2004). Fundamental to the successful outcome of major hepatic resection or partial-liver transplantation is the avoidance of technical complications. Recognition of this tenet has stimulated intense interest in the intrahepatic architecture of the liver so as to perform procedures that maximize viable hepatic mass and minimize blood loss while averting a biliary or vascular complication (Strasberg 1997).

Lobes and Segments of the Liver

Bases of Hepatic Segmentation

On first inspection, the liver appears to be divided into a large right portion and a much smaller left portion. The apparent plane of division (left fissure) passes through the falciform ligament, the round ligament, and the ligamentum venosum. Unfortunately, this apparent division does not correspond to the internal distribution of bile ducts and blood vessels (Fig. 1.1).

Figure 1.1: A. Three concepts of the liver lobule. The "classic" lobule, with central veins and peripheral hepatic triads; the "portal" lobule, centered on the hepatic triads; and the hepatic acinus. Both the central vein and the hepatic traids are peripheral. It is the concept of the acinus that has proved to be the most useful for understanding liver functions (**Gray et al., 1987**). **B.** Modern concept of the lobes and segments of the human liver (**Skandalakis 1980**). C to F. Projection of liver lobes and segments based on the distribution of intrahepatic ducts and blood vessels (**Skandalakis et al., 1987**). **C** and **D**. Terminology of Couinaud (1954). **E** and **F**. Terminology of Healey and Schroy (1953). (CP, caudate process; RP and LP, right and left portions of the caudate lobe). **G**. Highly diagrammatic presentation of the segmental functional anatomy of the liver emphasizing portal distribution and hepatic veins (**Skandalakis &Gray 1994**). **H**. Exploded segmental view of the liver emphasizing the intrahepatic anatomy and hepatic veins (**Skandalakis &Gray 1994**).