

Faculty of Women for Art, Science and Education

Laboratory Diagnosis of Rifampicin Resistant Pulmonary Tuberculosis through Molecular Techniques

A Thesis submitted for PhD degree in science (Microbiology)

By Ahmed Mohamed Ali Mohamed

BSc., Chemistry and Microbiology, Sohag university, 2004 MSc., Microbiology, Sohag university, 2012

Supervised by

Prof. Dr: Sherif Moussa Husseiny

Professor of Microbiology, Botany department, Faculty of women for Art, Science and Education, Ain Shams University

Prof. Dr: Faten Sayed Bayoumi

Professor of Microbiology, Immunogenetics Department, National Research Centre

(2018)

Approval Sheet

Laboratory Diagnosis of Rifampicin Resistant Pulmonary Tuberculosis through Molecular Techniques

A Thesis submitted for PhD degree in science (Microbiology)

By

Ahmed Mohamed Ali Mohamed

Supervised by

Prof. Dr: Sherif Moussa Husseiny Professor of Microbiology, Botany department, Faculty of women for Art, Science and Education, Ain Shams University Prof. Dr: Faten Sayed Bayoumi Professor of Microbiology, Immunogenetics Department, National Research Centre

I am deeply thankful to god, by the grace of whom the progress and success of this work was possible.

I would like express my greatest appreciation and gratitude to **prof Sherief Moussa**Husseiny, lprofessor of Microbiology, Faculty of women for art, science and education,

Ainshams University, for his helpful support and kind Supervision.

I would like to express my great thanks and gratitude to **prof Faten Sayed bayoumi**, Professor of Microbiology, National research center, for her helpful support and kind Supervision.

Also, I would like to express my deepest thanks and gratitude to **Dr. Moshera Ismaeel,**Director of Tuberculosis reference laboratory, Centeral laboratories, Minstery of health,
Egypt. for her kind, cooperation, faithful help and continues interest during this research.

Also, I would like to express my deepest thanks and gratitude to **Prof. Dr. Roqaya**Shallaby, Dean of Faculty of women for art, science, and education **Prof. Dr. Abeer**Roshdy Head of Department of Botany, and all members of Botany Department.

Also, I would like to express my great thanks to all the colleagus Mr. Mostafa Bahgat, Mr. Mohamed Yahya and Mr. Haitham Alsharief. would like to express my thanks to Mr. Mahmoud Saad El-din Bakhet, assistant lecturer of Mycology at Faculty of science, Sohag University, for their kind help.

Special thanks to my Parents, my wife and brothers for their faithful help, kene encouragement and blessed prayers.

Ahmed Mohamed Ali Mohamed

CONTENTS

CONTENTS

List of Tables	1
List of Figures	II
List of Abbreviations	IV
Abstract	VII
1. Introduction	1
1.1 Overview	1
1.2 Significance of Research	2
1.3 Objectives	2
2. Literature review	3
2.1Tuberculosis	4
2.2 History	4
2.3 Mycobacterium tuberculosis	7
2.3.1 Scientific classification and general characteristics	7
2.3.2 Cell wall structure	9
2.3.3 Reproduction	9
2.4 Immune response against Mycobacterium tuberculosis	10
2.5 Pathogenesis	11
2.6 Signs and symptoms.	14
2.7 Pulmonary tuberculosis	14

2.8 Extrapulmonary tuberculosis		
2.9 Transmission	16	
2.10 Global burden of Tuberculosis	17	
2.11 Burden of Tuberculosis in Egypt	22	
2.12 Vaccination against TB	24	
2.13 Anti-tuberculosis agents and drug resistance	25	
2.13.1 Streptomycin	25	
2.13.2 Rifampicin	26	
2.13.3 Isoniazid	27	
2.13.4 Ethambutol	30	
2.13.5 Amikacin, kanamycin and capreomycin	31	
2.13.6 Fluoroquinolones	33	
2.14 Multiple drug resistant tuberculosis	35	
2.15 Laboratory diagnosis of tuberculosis	36	
2.16 Specimen	36	
2.17 Acid fast staining	38	
2.18 Culture media for MTB isolation and differentiation	39	
2.18.1 Egg based Lowenstein- Jensen	39	
2.18.2 Agar based Middlebrook medium	40	
2.18.3 Liquid Media	40	
2.18.4 Semi-automated broth based culture	41	
2.19 Immunological tests for TB diagnosis	42	
2.19.1 Mauntox tuberculin test	42	

2.19.2 Enzyme linked Immunosorbent assay (ELISA)	43
2.19.3 Quantiferon-TB gold test (QFT-G)	43
2.20 Molecular techniques for laboratory diagnosis of PTB	44
2.20.1 NAATs for the detection of the MTBC	45
2.20.2 NAATs for the detection of the MTBC and drug	
resistance	49
2.20.3 LIPA for the detection of the MTBC and drug resistance.	51
2.20.4 LIPA for the differentiation of the MTC	53
2.20.5 Direct hybridisation assays for the detection of the MTBC	54
2.20.6 Sequencing based diagnostic methods	54
2.20.7 Array-based commercial tests for the detection of MTB and	
drug resistance	56
3. Materials and methods	58
3.1 Biosafety	59
3.2 Study description	60
3.3 Study design	60
3.4 Sampling	61
3.5 Conventional laboratory diagnosis and susceptibility testing of	
PTB	62
3.5.1Cultivation of MTB	62
3.5.2 Sputum decontamination by Petrof's method	63
3.5.3 Acid fast staining (Zeihl-Neelsen stain)	64
3.5.4 Drug susceptibility testing by culture proportion method.	64

3.6 Molecular diagnosis and susceptibility testing of PTB
3.6.1 Gene Xpert MTB/RIF system for detection of MTB and
rifampicin resistance
3.6.2 Usefulness of stool as a sample for diagnose PTB by gene
Xpert MTB/RIF
3.6.3 Genotype MTBDR <i>plus</i> for detection of MTB and drug
3.6.4 Sequencing of rpoB gene in rifampicin resistant isolates
3.7 Statistical analysis
3.8 Ethical approval
4. RESULTS
4.1 Study participants
4.2 Specimens
4.3 Conventional laboratory diagnosis and susceptibility testing of
PTB
4.4 Gene Xpert MTB/RIF system for detection of MTB and RIF
susceptibility testing in sputum samples
4.5 Usefulness of stool as a sample for diagnose PTB by gene Xper
MTB/RIF
4.6 Genotype MTBDRplus for detection of MTB and drug
susceptibility testing
4.7 Sequencing of rpoB gene in rifampicin resistant isolates
5. DISCUSSION

6. REFERENCES.	146
SUMMARY	204

Table	LIST OF TABLES	
Table 1:	Demographic and clinical criteria of first patients group (Age between 18 to 60 years old)	88
Table 2:	Demographic and clinical criteria of second patients group (Age between 1 to 15 years old)	89
Table 3:	Validity values of Acid-fast smear (AFB) compared to LJ culture.	94
Table 4:	Gene xpert MTB/RIF results according to patient's clinical classification.	95
Table 5:	Validity values of sputum gene xpert MTB/RIF (GX) compared to LJ culture	96
Table 6:	Stool gene xpert MTB/RIF results according to patient's clinical classification	98
Table 7:	Validity values of stool gene xpert MTB/RIF (GX) compared to LJ culture	99
Table 8:	Performance of MTBDR <i>plus</i> to detect MTB	101
Table 9:	Performance of MTBDRplus to detect rifampicin and isoniazid resistant in second patients group (adult patients)	102
Table 10:	Performance of MTBDRplus to detect rifampicin and isoniazid resistant in first patients group (children patients)	103
Table 11:	Identification of mutation of <i>rop</i> B gene in 12 rifampicin resistant Isolates.	117

Figure	LIST OF FIGURES	Page
Figure 1:	Egyptian clay artifact of an emaciated man with a characteristic angular kyphosis suggestive of Pott's disease. Reproduced from TB, Past, Present (Pálfi 1999)	5
Figure 2:	The pathophysiology of MTB inside the host	15
Figure 3:	Estimated absolute numbers of TB cases and deaths (in millions per year), 1990–2014	19
Figure 4:	Estimated global HIV prevalence in new and relapse TB cases, 2014	20
Figure 5:	Estimated global TB incidence rates, 2014	21
Figure 6:	TB Egypt profile. Incidence, prevalence and mortality rate of TB, MDR-TB and HIV patients with TB	23
Figure 7:	Gene xpert MTB/RIF system.	68
Figure 8:	Illustration of banding MTBDR <i>plus</i> banding patterns of different strains	78
Figure 9:	Demographic and clinical characteristics of 333 recruited patients with clinical signs of PTB	86

Figure 10:	Flowchart showing number and classification of second	
	patients group (age between 18 to 60 years old) and their laboratory results	90
Figure 11:	Flowchart showing number and classification of second patients group (age between 1 to 15) years old and their laboratory results	91
Figure 12:	PCR amplification of rpoB gene of rifampicin resistant isolates. PCR product of rpoB was visualized on 1.5% agarose gel	91
Figure 13-24:	Sequence of 157 bp region of rpoB gene in rifampicin resistant isolate	105 - 116
13-44.		

LIST OF ABREVIATIONS

AFB Acid fast bacilli

AK Amikacin

AM-A Amplification mix A

AM-B Amplification mix B

BAL Bronchoalveolar lavage

BCG Bacillus of Calmette and Guerin

CAP Capreomycin

CDC Centers for disease control and prevention

CI Confidence interval

CON-C Conjugate concentrate

CON-D Conjugate buffer

CXR Chest X-ray

DEN Denaturation solution

DNA Deoxyribonucleic acid

DST Drug susceptibility testing

Eis Enhanced intracellular survival protein

ELISA Enzyme linked Immunosorbent assay

EMB Ethambutol

FASII Fatty acid synthase type II

FDA Food and Drug Administration

FQ Fluoroquinolones

FRET Fluorescence resonance energy transfer

GX Gene xpert MTB/RIF

HIV Human immunodeficiency virus

HRM High-resolution melting

HYB Hybridization buffer

IL-12 Interleukin 12

INH Isoniazid

ISS Induced sputum specimen

KAN Kanamycin

LAM Lipoarabinomannan

LAMP Loop mediated isothermal amplification

LED Light-emitting diode

LJ Löwenstein-Jensen

LPAs Line probe assays

LPS Lipopolysaccharide

LTBI Latent TB infection

MDR-TB Multiple drug resistant tuberculosis

MTB Mycobacterium tuberculosis

MTBC Mycobacterium tuberculosis complex

MyD88 Myeloid differentiation primary response 88

NAAT Nucleic acid amplification test

NAD Nicotinamide group of nicotinamide adenine dinucleotide

NTM Non-tuberculosis mycobacteria

PCC Probe Check Control

PCR Polymerase chain reaction

PPD Purified protein derivative

PTB Pulmonary tuberculosis

QFT-G Quantiferon-TB gold test

RIF Rifampicin

RIN Rinse solution

RRDR Rifampicin resistance determining region

rRNA Ribosomal RNA

RT-PCR Real time PCR

SDA Strand displacement amplification

SM Streptomycin

SPC Specimen processing control

STR Stringent wash solution

SUB-C Substrate concentrate

SUB-B Substrate buffer

TB Tuberculosis

TLR Toll-like receptors

TNF- Tumor necrosis factor-

TST Tuberculin skin test

WHO World health organization

bp Base pair