"Effect of Bone Marrow Derived Mesenchymal Stem Cells infusion Timing on Radiation Induced Oral Mucositis in Albino rat"

Thesis submitted for partial fulfillment for the requirements of Doctoral Degree in Oral Medicine

Presented by

YasmineGamilHamed

B.D.S (AinShamsUniversity) 2002 M.Sc. (AL Azhar University – Girls) 2013

Under Supervision of

Prof.Dr. Hala Kamal Abd El Gaber

Professor of Oral Medicine, Oral Diagnosis and Periodontology Faculty of Dentistry- Ain Shams University

Prof. Dr. Tarek Hamed Shouman

Professor and Head of Radiotherapy Department National Cancer Institution- Cairo University

Prof.Dr.EmadHamza El-Gemeie

Professor and Head of Pathology Department National Cancer Institution- Cairo University

Dr. Ola Mohamed Ezzatt

Lecturer of Oral Medicine, Oral Diagnosis and Periodontology Faculty of Dentistry- Ain Shams University

> Faculty of Dentistry AinShamsUniversity 2018

بسم الله الرحمن الرحيم

"وقل ربي زدنى علما"

صدق الله العظيم

Acknowledgment

First of all I would like to thank god who paved the way and by his will every thing can be achieved.

I would like to express my sincere gratitude, deep thanks and appreciation to **Dr.Hala Kamal Abd El Gaber**Professor of Oral Medicine, Oral Diagnosisand Periodontology Faculty of Dentistry Ain Shams University, for the valuable guidance, keen supervision and suggestion that helped me through this work

I would like to express my appreciation to **Dr.TarekHamedShouman**Professor and Head of Radiotherapy Department National Cancer Institution – Cairo University for his kind assistant, support and guidance throught the steps of this research.

I would like to express my appreciation to **Prof.Dr.EmadHamza El-Gemeie**Professor and Head of pathology DepartmentNational Cancer Institution — Cairo University for his continous advice, support and guidance throught the steps of this research.

My deep appreciation sincere gratitude go to **Dr. Ola**Mohamed Ezzatt Lecturer of Oral Medicine, Oral Diagnosis and
Periodontology, Faculty of Dentistry Ain Shams University for clos
attention devoted effort, supervision of all details of this
work, countless hours of work throughout the steps in this research

Last but not least ,many thanks should be extended to all other members of Oral Diagnosisand Periodontology Faculty of Dentistry AinShams University for their spiritual encouragement and support.

Dedication

To my mother for implanting confidence, and faith in myself, thank you for your patience, understanding and continuous support without your support I wouldn't do anything.....

To the soul of my father for his endless Love, Support & Encouragement.....

To my beloved daughters whom I let them

Table	Title	Page
No.		
1	Comparison between the percent of change of rat weight in each time interval within the studied groups	70
2	Comparison between the studied groups regardingmean percent of change in rate weight at different time intervals	71
3	Comparison between the studied groups regardingmean area of mucositis at different follow up timing	75
4	: Comparison between the percent of change of area of mucositis in each time interval within the studied groups	77
5	Comparison between the studied groups regarding mean percent of change in area of mucositisat different time intervals	78
6	Comparison between the studied groups in the percentage of histological grading at each time interval	90
7	Comparison between mean area fractions (PCNA), (Casp) at different follow up timing in the studied groups	110
8	Comparison between mean percentage change of mean area fraction of (PCNA) and(Casp) in each group at different time intervals	112
9	Comparison between the studied groups regardingmean percentage change of (PCNA) and (Casp) in different time intervals	114

List of Figures

Figure No.	Title	Page	
1	The linear accelerator (Electa-precise TSystem)	46	
2	5 rats with heads and necks centered in field of radiation		
3	Biological safety cabinet		
4	Humified CO2 incubator		
5	Centrifuge	49	
6	Inverted phase microscope	50	
7a	(a)The prepared 0.4ml of phosphate buffer saline containing 5×10 ⁶ cells BM-MSCs one of them contains cells labeled with PKH26 fluorescent linker dye	55	
7b	(b)BM-MSCs infusionin lateral tail vein of the rat	55	
8	Digital scale used for measuring rat weight	56	
9a	Disseced tongue specimen	57	
9b	Tongue specimen stained with toluidine blue demonstrating areas of mucositi	57	
9c	Digitized images of stained tongue placed over graph paper and prepared for measuring the surface area of mucositis	57	
10	A plate showing steps for measuring area of mucositis	58	
11	A plate showing the steps of the immunohistochemical evaluation.	65	

Figure No.	Title	Page
12	Bar chart representing comparison between thestudied groups in percent of change of rate weight at different time intervals	72
13	Macroscopic pictures of rat tongue specimens stained with toluidine blue and representing changes in area of mucositis in the study groups at 3, 5 and 7 days	73
14	Bar chart representing comparison between the studied groups regardingmean area of mucositis at 3, 5 and 7 days	76
15	Bar chart representing comparison between the studied groups in percent of change of area of mucositis at different time intervals	78
16	Rat tongue sections examined with a fluorescent microscope to detect presence of PKH26 labeled stemcells (red auto fluorescence)in Group III and IV at 3, 5 and 7 days	79
17	A photomicrograph of the dorsum of the tongue of a rat in the control group showing: a keratinized stratified squamous epithelium (double-head arrow), keratin layer (black arrows), lamina propria with few blood vessels of normal caliber (blue arrows) (H&E, original magnification 20 X).	80
18	Photomicrographs of the dorsum of the tongue of a rat in Group II showing histological changes at 3 days (a), 5 days (b) and 7 days (c) after irradiation (H&E, original magnification 40 X).	82
19	photomicrographs of the dorsum of the tongue of a rat in Group III showing histological changes at 3 days (a), 5 days (b) and 7 days (c) after irradiation (H&E, original magnification 40 X).	85
20	photomicrographs of the dorsum of the tongue of a rat in Group IV showing histological changes at 3 days (a), 5 days (b) and 7 days (c) after irradiation (H&E, original magnification 40 X).	88

Figure No.	Title	Page
21	A photomicrograph of the dorsum of the tongue of a rat in the normal control group demonstrating: a positive nuclear immunoreactivity for PCNA among basal cells (yellow arrows) and some suprabasal cells (green arrows). Negatively immunostained nuclei (red arrows) (anti PCNA, original magnification 40 X)	91
22	: photomicrographs of the dorsum of the tongue of a rat in Group II showing PCNA expression at 3 days (a), 5 days (b) and 7 days (c) after irradiation (anti PCNA, original magnification 40 X)	93
23	photomicrographs of the dorsum of the tongue of a rat in Group III showing PCNA expression at 3 days (a), 5 days (b) and 7 days (c) after irradiation (anti PCNA, original magnification 40 X).	95
24	: photomicrographs of the dorsum of the tongue of a rat in Group IV showing PCNA expression at 3 days (a), 5 days (b) and 7 days (c) after irradiation (anti PCNA, original magnification 40 X).	97
25	A photomicrograph of the dorsum of the tongue of a rat in the normal control group revealing a nearly abscentimmunoreactivity for caspase throughout the lingual epithelium (anti caspase, original magnification X40).	98
26	photomicrographs of the dorsum of the tongue of a rat in Group II showing Caspase expression at 3 days (a), 5 days (b) and 7 days (c) after irradiation (anti caspase, original magnification X40).	100

Figure No.	Title	Page
27	photomicrographs of the dorsum of the tongue of a rat in Group III showing Caspase expression at 3 days (a), 5 days (b) and 7 days (c) after irradiation (anti caspase, original magnification X40).	102
28	photomicrographs of the dorsum of the tongue of a rat in Group IV showing Caspase expression at 3 days (a), 5 days (b) and 7 days (c) after irradiation (anti caspase, original magnification X40).	104
29	photomicrograph of dorsum of rat tongue in different groups at 3,5 and 7 days (A, B and C respectively) in comparison to normal control.	105
30	Bar chart representing comparison between the studied groups regards percent of change inimmunohistochemistry (PCNA)	115
31	Bar chart representing comparison between groups regarding percentage change in mean area fraction of Caspase at different intervals	115

List of Abbreviations

Acronym	Definition
AC	Apoptotic cells
СВ	Cord blood
COPD	Chronic obstructive pulmonary disease
СТ	Chemotherapy
DSCs	Dental Stem Cells
ES	Embryonic stem
GMSCs	spheroid-derived gingival MSCs
Gy	Gray
H&NRT	Head and neck radiotherapy
HNC	Head and neck patients
HSCs	hematopoietic stem cell
HSCT	hematopoietic stem cell transplantation
IL-1β,	Interleukin 1-beta

Acronym	Definition
IPS cells	Induced pluripotent stem cells
KGF	Keratinocyte growth factor
MMP	Matrix metalloproteinase
NF-KB	Factor-кb
NK	Natural killer
OLP	oral lichen plamus
PARP	Poly (adpribose)polymerase
PCNA	Proliferating cell nuclear antigen
PRP	Platelet rich plasma
PS	Phosphatidylserine
ROS	Reactive oxygen species
RT	Radiotherapy
SLE	Systemic lupus erythematosis
TGF-p3	Transforming growth factor-p3
TNF-α	Tumor necrosis factor-alpha

Acronym	Definition
TUNE	Terminal deoxynucleotidyl transferase end
	labeling
UC	Umbilical cord
VEGF	vascular endothelial growth factor

Introduction

INRODUCTION

Cancer is defined as uncontrolled proliferation of cell with lack of differentiation and immortality compared to normal cells due to multiple changes in genetic expression which lead to imbalance between cell proliferation and cell death. It is further classified to benign or malignant based on its ability of invading other tissue (*Zheng*, *et al.* 2009).

Cancer is one of the leading causes for mortality across the world. Among the various type of cancer, most of the death occurs due to oral cancer and lung cancer. The lancet news report expected that 75% of population will suffer from to cancer in 2030 (*Makiko*, *et al.*, *2012*).

Three kinds of therapy like Chemotherapy (CT), Radiation therapy (RT) and surgical ablation are mainly used for cancer treatment. (CT) and (RT) therapy have many side effects as these therapies are unable to distinguish between normal and cancerous cells due to similar mitotic index. Chemotherapy may lead to bone marrow suppression, anemia, alopecia, cachexia, mucositis, nausea, vomiting, reduced fertility and chances of second cancer (*Wilkes*, 1998).

Radiotherapy plays an important role in the management of head and neck cancer. The majority of new cases of invasive head and neck cancer need radiotherapy as a primary treatment, as an adjunct to surgery, in combination with chemotherapy, or as palliation The radiation dose needed for the treatment of cancer is based on location and type of malignancy, and whether or not radiotherapy will be used solely or in combination with other modalities (*Dobbs*, *et al.*, *1999*).

Oral mucositis is an inflammatory process of the oral mucosa due to radiation in head and neck cancer patients, chemotherapy or high dose of busulfan and cyclophosphamide used for prevention of graft rejection after bone marrow transplantation. It is characterized by atrophy of squamous epithelial tissue of oral mucosa, vascular damage and an inflammatory infiltrate at the basement membrane region; epithelial atrophy is usually followed by ulceration (*Sonis*, *et al.* 2004).

The development of oral mucositis is a complex process. Severe oral mucositis results from injury to rapidly dividing epithelial cells that line the oral cavity. This injury occurs as a consequence of CT and RT regimens, the roles of which are to target and eliminate rapidly dividing cancer cells (Sonis, et al. 2004)

Oral mucositis increases mortality and morbidity and many times contributes to rising health care costs. Because the patient is often neutropenic as well, the soreness may be aggravated by the development of fungal infections in the mouth, most commonly oral candidiases (*Alkesh*, *et al. 2013*).

Oral mucositis has a dramatic impact on the patient's quality of life. It also adversely influences the administration of an optimal CT cycle. Frequently, reduction of dose, late treatment and discontinuations of therapy is necessary to allow the oral lesions to heal. Also life-threatening infections with fungus and higher treatment costs are related to the severity of oral mucositis (*Rubenstein*, 2004).

However, most of current interventions for oral mucositis are palliative, neither specific nor efficient at preventing or treating this complication. Even though recombinant human keratinocyte growth factor