

ELASTIC AND AEROELASTIC ANALYSIS OF AIRCRAFT METALLIC, COMPOSITE, AND SMART WINGS

By

Mohamed Abdou Mahran Kasem

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

in
Aerospace Engineering

ELASTIC AND AEROELASTIC ANALYSIS OF AIRCRAFT METALLIC, COMPOSITE, AND SMART WINGS

By Mohamed Abdou Mahran Kasem

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

in Aerospace Engineering

Under the Supervision of

Prof. Dr. Hani M. Negm

Prof. Adel M. Elsabbagh

Professor of Aircraft Structures
Aerospace Engineering Department
Faculty of Engineering, Cairo University

Prof. Adel M. Elsabbagh

Prof. Adel M. Elsabbagh

Professor
Mechanical Engineering Department
Faculty of Engineering, Ain-Shams
University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

ELASTIC AND AEROELASTIC ANALYSIS OF AIRCRAFT METALLIC, COMPOSITE, AND SMART WINGS

By Mohamed Abdou Mahran Kasem

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in **Aerospace Engineering**

Approved by the Examining Committee	
Prof. Dr. Hani M. Negm,	Thesis Main Advisor.
Prof. Dr. Adel M. Elsabbagh, Ain Shams University.	Advisor.
Prof. Dr. Edward A. Sadek,	Internal Examiner
Prof. Dr. Mahdy T. E. Badawy, National Research Center	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Mohamed Abdou Mahran Kasem

Date of Birth: 7/11/1987 **Nationality:** Egyptian

E-mail: Abdu_aerospace@eng1.cu.edu.eg

Phone: 0106 115 44 12

Address: Aerospace Engineering Department

Registration Date: 1 / 10 / 2015 **Awarding Date:** 1 / 10 / 2018

Degree: Doctor of Philosophy

Department: Aerospace Engineering

Supervisors:

Prof. Hani Mohamed El-Morsy Negm Prof. Adel Mohamed Moneeb Elsabbagh,

Ain-Shams University

Examiners:

Prof. Hani M. Negm (Thesis Main Advisor) Porf. Adel M. Elsabbagh (Advisor)

(Ain Shams University)

Prof. Edward A. Sadek (Internal Examiner)
Prof. Mahdy T. E. Badawy (External Examiner)

(National Research Center)

Title of Thesis:

ELASTIC AND AEROELASTIC ANALYSIS OF AIRCRAFT METALLIC, COMPOSITE, AND SMART WINGS

Key Words:

Aeroelasticity, finite elements, Smart materials, Composites, swept wings

Summary:

In the present dissertation elastic and aeroelastic models are developed for the analysis of metallic and composite wings with attached piezoelectric actuators using the finite element method. The elastic and aeroelastic problems were modeled as eigenvalue problems. The piezoelectric potential effect is integrated as prestresses using the concept of geometric stiffness. The analysis covers 2-D and 3-D wings, and the effect of engine mass.

Acknowledgments

First of all, special thanks are due for Almighty Allah (God). Deep appreciation is expressed for my supervisors for their supervision, guidance and encouragement during my work. Thanks are extended to Professor Hani M. Negm of the Aerospace Engineering Department, Faculty of Engineering, Cairo University who supported me with advice and knowledge during my work, and Professor Adel Elsabbagh who guided me in the finite element modeling.

Special thanks are due to Prof. Earl Dowell—the William Holland Hall Professor of Mechanical Engineering in the Edmund T. Pratt, School of Engineering at Duke University, Durham NC, USA—For his support and guidance during my grant as a Fulbright Visiting Student at Duke University for one academic year (2017/2018).

Finally, a special word of thanks is given to my parents (may God rest their souls) and my wife who supported me and prayed for my success.

Dedication

To my Mother Ragaa, my father Abdou, and my wife Eman

Table of Contents

CONTENTS		. III
LIST OF TA	BLES	V
LIST OF FIG	GURES	Vl
ABSTRACT		VIII
CHAPTER 1	INTRODUCTION	1
1.1.	Composite structures	1
1.2.	PIEZOELECTRIC MATERIALS	2
1.3.	FINITE ELEMENT METHOD	4
1.4.	THE CLASSICAL LAMINATED PLATE THEORY	6
1.5.	AERODYNAMIC ANALYSIS	10
1.5.1.	The doublet lattice method	11
1.6.	AEROELASTICITY	13
1.6.1.	Static aeroelasticity	15
1.6.2.	Dynamic aeroelasticity	16
1.7.	ORGANIZATION OF THE THESIS	17
CHAPTER 2	LITERATURE REVIEW	19
2.1.	Introduction	19
2.2.	RELATED WORK	19
2.3.	SUMMARY	21
CHAPTER 3	FINITE ELEMENT MODELING AND AEROELASTICITY	22
3.1.	FINITE ELEMENT FORMULATION	22
3.1.1.	In-plane action	22
3.1.2.	Bending action	23
3.2.	ELASTIC AND AEROELASTIC MODELING	25
3.2.1.	Stiffness matrix from the potential energy	25
3.2.1.	Mass matrix from the kinetic energy	27
3.2.1.	Load vector from the work energy	29
3.3.	GEOMETRIC STIFFNESS	30
3.4.	STABILITY ANALYSIS	32
CHAPTER 4	MODEL IMPLEMENTATION AND VALIDATION	34
4.1.	AEROELASTIC ANALYSIS	34
4.2.	REPRESENTATION OF PIEZOELECTRIC MATERIAL	35
CHAPTER 5	RESULTS AND DISCUSSIONS	39
5.1.	COMPARISON AMONG DIFFERENT FINITE ELEMENTS	39
5.1.1.	Study of the natural frequencies of free vibration of an elastic plate.	39
5.1.2.	Stress and deformation analysis of metallic plate wing	41
5.1.3.	Wing aeroelastic analysis	44

5.2.	AIRFLOW AND P	EZOELECTRIC EFFECT ON WING AEROELAST	IC
		PERFORMANCE 4	47
5.2.1.	Aerodynamic load effec	t	48
5.2.2.	Piezoelectric effect on s	traight wings aeroelastic stability	50
5.2.3.	Piezoelectric effect on s	wept wings aeroelastic stability	54
5.3	2.4. Piezoelectric e	ffect on laminated wings with different lamina	ate
		configurations	57
5.3.	ENGINE MASS EFFECT		62
5.3.1.	Mass position effect on	elastic and aeroelastic modes of straight metal	lic
		\mathcal{E}	63
5.3.2.	Mass position effect or	n elastic and aeroelastic modes of swept metal	lic
		\mathcal{E}	64
5.3.3.	Mass magnitude e	ffect on elastic and aeroelastic modes of metal	lic
		\mathcal{E}	66
5.3.4.	Mass position effe	ct on elastic and aeroelastic modes of composi	
			68
5.4.		N LARGE SCALE WINGS	
5.5.	EXPERIMENTAL CONSIDER	RATIONS	72
5.5.1.	•		
5.5.2.	Experimental setup		80
CONCLUSIO	NS AND FUTURE WORK		81
REFERENCE	S		82
APPENDICES			90
APPENDIX A:	SHAPE FUNCTIONS OF DIFFER	RENT FINITE ELEMENTS	90
THE LINEAR T	RIANGULAR ELEMENT (LIN	TRI)	90
For bending	action		91
THE LINEAR (QUADRILATERAL ELEMENT ($f I$	INQUAD)	92
For in-plane	e action		92
For bending	action		92
THE LINEAR (QUADRILATERAL ELEMENT BA	ASED ON DEFORMATION MODES (MKQ12).	94
THE EIGHT-N	ODE QUADRILATERAL ELEME	NT (QUAD8NOD)	95
For in-plane	e action		96
For bending	action		97
THE NINE-NO	DE QUADRILATERAL ELEMEN	T (QUAD9NOD)10	00
For in-plane	e action	1	00
For bending	; action	1	01

List of Tables

Table 4-1. Wing geometry, material properties, and boundary conditions34	ļ
Table 4-2. Comparison among different laminate configuration for aeroelastic analysis.	
The laminates are defined with respect to the span-wise direction35	5
Table 4-3. PZT and Graphite/Epoxy material properties	5
Table 4-4. Composite and the piezoelectric material properties	7
Table 5-1. The natural frequencies of clamped square plate [Hz]40)
Table 5-2. The product of the average error percentage and processing time for various	
finite elements41	Ĺ
Table 5-3. Plate wing elastic analysis	
Table 5-4. Max. displacement and stress over the plate wing under aerodynamic load 42	
Table 5-5. Plate wing aero-elastic analysis	5
Table 5-6. Divergence speed of the plate wing related to different laminate	
configurations45	
Table 5-7. The error % in each analysis and the computation time46	
Table 5-8. Plate geometry, material, and flow properties	
Table 5-9. Tip vertical displacement versus flow speed	
Table 5-10. Effect of piezoelectric voltage on root configuration aeroelastic modes51	Ĺ
Table 5-11. Effect of piezoelectric voltage on staggered configuration aero-elastic	
modes	2
Table 5-12. Piezoelectric effect on aeroelastic stability of root configuration of swept	
wings54	ļ
Table 5-13. Piezoelectric effect on the aeroelastic stability of composite swept wings	
for staggered configuration	
Table 5-14 . Change of the critical speed [m/s] for the first laminate configuration59	
Table 5-15. Change of the critical speed [m/s] for the second laminate configuration60	
Table 5-16. Wing geometry and material properties	2
Table 5-17. wing first three natural frequencies, flutter frequency, flutter speed, and	
divergence speed for different laminate configuration	
Table 5-18. The maximum wing's displacement for different voltages71	L

List of Figures

Figure 1-1. Wing composite layup	2
Figure 1-2. Piezoelectric sheet dimensions are in inch (mm) [12]	
Figure 1-3. Finite element model for typical wing	
Figure 1-4. The Pascal Triangle	
Figure 1-5. Finite elements	6
Figure 1-6. Lamina and laminate coordinates [19]	7
Figure 1-7. Lamina stress resultants	9
Figure 1-8. Example of chord-wise and span-wise wing pressure distributions [23]	11
Figure 1-9. The doublet lattice panel	
Figure 1-10. Lattice on wing with their details	13
Figure 1-11. Tacoma Narrows Bridge Flutter [29]	
Figure 1-12. Aero-elasticity	15
Figure 1-13. Static aero-elasticity	16
Figure 1-14. Wing flutter	17
Figure 3-1 Lamina Coordinates	28
Figure 3-2. The model flow chart	33
Figure 4-1. Vertical Displacement field [m] of the composite plate with piezoelectr	ric
actuators. Plate root is along the red edge, plate span is along red to blue edge, and	
tip is a long blue edge.	36
Figure 4-2. Plate vertical centerline displacement	36
Figure 4-3. Square composite plate	37
Figure 4-4. Comparison with numerical and experimental results for natural	
frequencies	38
Figure 5-1. Square plate	39
Figure 5-2. The average error percentage and execution time of each finite element	in
the frequency analysis	40
Figure 5-3. Plate wing plane form geometry	41
Figure 5-4. Max. displacement and Von-Mises stress of the plate wing in addition to	to the
executing time	43
Figure 5-5. The Von-Mises stresses for each element model	44
Figure 5-6. The average error and computation time for each element	46
Figure 5-7. Piezo-sheets and wing mesh: (a) the root configuration, and (b) stagger	ed
configuration. The blue areas define the piezoelectric sheets.	47
Figure 5-8. Tip displacement versus airspeed.	49
Figure 5-9. Wing displacement distribution [m] due to the aerodynamic pressure at	flow
speed 30 m/s (wing root is the blue edge; wing tip is the yellow edge)	49
Figure 5-10. the flutter speed versus the first 5 frequency modes at zero voltage for	the
root configuration	
Figure 5-11. Effect of piezoelectric voltage on root configuration aeroelastic mode	s51
Figure 5-12.Effect of piezoelectric voltage on staggered configuration aero-elastic	
modes	
Figure 5-13. Wing damping ratio vs speed with 50 applied volts	53
Figure 5-14. Wing damping ratio vs speed with 70 applied volts	53
Figure 5-15. The airspeed versus damping for the first five modes for the root	
configuration. (a) in case of forward swept wing, and (b) in case of backward swep	ot
wing	54

Figure 5-16. Piezoelectric effect on aeroelastic stability of root configuration of swe	pt
$\boldsymbol{\Theta}$	55
Figure 5-17. The airspeed versus damping for the first five modes for the staggered	
configuration. (a) in case of forward swept wing, and (b) in case of backward swept	
wing	56
Figure 5-18. Piezoelectric effect on the aeroelastic stability of composite swept wing	gs
staggered	57
Figure 5-19. flow speed versus stiffness for different laminate configuration	58
Figure 5-20. Change of the critical speed [m/s] for the first laminate configuration	59
Figure 5-21. flow speed versus damping for different laminate configuration	60
Figure 5-22. Change of the critical speed [m/s] for the second laminate configuration	n 61
Figure 5-23. Plate wing mode with point mass.	62
Figure 5-24. The first five natural modes and the flutter frequency.	
Figure 5-25. The flutter speed.	
Figure 5-26. Mass position effect on the first three modes of Forward swept wing (le	eft),
and backward swept wing (right)	65
Figure 5-27. Mass position effect on the fourth and fifth modes of Forward swept w	ing
(left), and backward swept wing (right)	65
Figure 5-28. Mass position effect on the flutter speed and frequency of Forward swe	pt
wing (left), and backward swept wing (right)	
Figure 5-29. mass magnitude effect on the wing first three modes. the mass located	at
0.3% of the LE	
Figure 5-30. mass magnitude effect on the wing flutter speed and frequency. the ma	
located at 0.3% of the LE	67
Figure 5-31. the first three natural frequencies and flutter frequency	69
Figure 5-32. the wing flutter speed	70
Figure 5-33. Span-wise lateral displacement of the full-scale wing under different	
applied voltages	
Figure 5-34. Mesh of 3-D wing of Flying Wing aircraft	72
Figure 5-35 Different piezoelectric models over a plate	
Figure 5-36. Experimental analysis of aluminum plate with piezoelectric sheets	74
Figure 5-37. Piezoelectric sheets at wing tip.	75
Figure 5-38. Aluminum plate with steel support	76
Figure 5-39. Piezoelectric material properties	
Figure 5-40. m+p VibPilot data acquisition apparatus	
Figure 5-41. PCB PIEZOTRONIC accelerometer.	
Figure 5-42. Hummer for vibration analysis.	
Figure 5-43. Voltage supplier	79
Figure 5-44. The experiment setup	80

Abstract

There is an increase in the demand for decreasing the aircraft weight for economic issues. This leads to a decrease in the aircraft stiffness and subsequently the tendency of instability phenomena, such as wing divergence and flutter, to take place. One solution to overcome such problems is the effective use of composite structures, and recently the integration of piezoelectric structures. A novel aeroelastic model for the analysis of metallic and composite wings with attached piezoelectric patches, using the finite element method, is developed. It is based on a 9-node smart composite shell element that is selected based on a comparison among different elements that were found in the literature. The mathematical model is presented and validated in detail.

The model is subsequently used to investigate the effect of piezoelectric forces on the composite wing elastic and aeroelastic modes. Several configurations are considered in the present study. For instance, in composite wings, two wing configurations are considered: one with the piezoelectric sheets at the wing root, while the second model with piezoelectric patches distributed over the wing surface. The elastic analysis shows that the wing twisting mode is significantly improved by the second wing configuration in comparison to the first one. In the aeroelastic analysis, both wing configurations significantly increase the aeroelastic stability of composite wings by increasing both the divergence and flutter speeds. However, the second wing configuration effect is more significant than the first one, especially for divergence analysis. The piezoelectric effect is studied for a voltage range from 0 to 100 volts. Results also show that the piezoelectric effect is more significant in plate-like wings, but it may not be suitable for large scale or 3D wings. The present model can be used effectively to determine the best piezoelectric patches distribution over a composite wing for better elastic and aeroelastic performance, and also to control certain wing modes. It can also be used along with the appropriate optimization schemes to determine the best piezoelectric distribution and applied voltage for better elastic and aeroelastic performance.

The model is also used to investigate the effect of engine mass on the wing elastic and aeroelastic performance. It is found that the best engine mass position is to be at the leading edge between 30% and 40% of the wing span for better elastic and aeroelastic performance.

Experimental investigations show that it is important to investigate the practical limitations of the present numerical analysis as well as the use of piezoelectric materials in real life problems. For instance, the area covered by the piezoelectric sheets should be significant for remarkable stiffening effect. However, the increase of piezoelectric sheets over the plate wing is found to increase the wing mass and, consequently, change its dynamic performance.

Chapter 1 Introduction

Since the first time piezoelectric materials were introduced, they have been used in numerous structural applications, such as structural beams [1]–[3] and plates [4], [5]. The use of piezoelectric structures either as sensors or actuators was found to be effective for structural analysis [6] and control [4], especially for small scale applications [7]. That is because of the ability of the piezoelectric, as a smart material, to transform mechanical strain into electric displacement and vice versa. For these reasons, piezoelectric materials have been implemented in a wide range of structural and control applications.

Smart materials have been applied to elastic and aeroelastic problems, and in composite and metallic structures. These models have been tested using numerical or experimental methods. The aim of the present work is to develop an aeroelastic model to investigate the metallic, composite, and smart wing elastic and aeroelastic performance using the finite element method. The present section provides a brief introduction to composite structures, smart structures, finite element method, wing aeroelastic analysis as well as a solid foundation for the prospective model.

1.1. Composite structures

The need to decrease aircraft weight and cost is the main driver towards introducing new materials in aircraft structures. Therefore, composite materials have become very popular and widely used in aircraft structures for their relatively large strength to weight ratio. In general, a composite material consists of two or more materials that are integrated together on the macroscopic level to end up with a new material with enhanced properties. The composite materials used in aircraft structures usually consist of fibers embedded in a matrix.

Fiber reinforcement

Fibers are usually made of strong and stiff materials such as glass or carbon [8]. Different fiber forms available are twos, whiskers, and nanotubes. One composite material may have one or more fiber types. In aircraft structures composite layers are laminated over each other with different fiber directions to provide appropriate strength and stiffness in the desired directions.

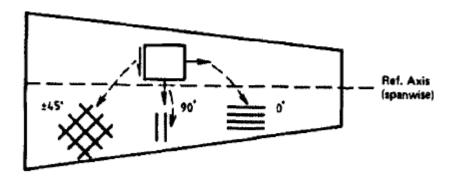


Figure 1-1. Wing composite layup

Matrices

The matrix provides the medium which protects and bonds the fibers together and transfers load between them.

1.2. Piezoelectric materials

Smart materials are known as those materials that have unusual coupling properties [9]. Piezoelectric materials are one type of those. Piezoelectric effect includes the transformation of mechanical displacement into electric signal and vice versa. This special property is the main reason for the piezoelectric material to be engaged in several aerospace applications, such as wing vibration control and de-icing [10]. This section introduces the piezoelectric material and its mathematical modeling.

The piezoelectric material is defined by its Young's modulus, the relative permittivity, voltage output coefficients, coupling coefficients, and piezoelectric voltage coefficients. Examples of piezoelectric materials in industry can be found in [11]. From these properties, one can formulate the piezoelectric relations for structural modeling. The piezoelectric relations for electrical and mechanical coupling can be expressed as [9]

$$\mathbf{\varepsilon} = \mathbf{s} \, \mathbf{\sigma} + \mathbf{d} \, \mathbf{E}$$

$$\mathbf{D}_{e} = \mathbf{d}^{\mathrm{T}} \mathbf{\sigma} + \hat{\mathbf{o}}^{\mathrm{T}} \mathbf{E}$$
(1.1)

 ϵ and σ are the mechanical strain and stress, respectively. d is the strain constant matrix, D_{ϵ} is the electric displacement, \grave{O} is the dielectric matrix, and E is the electric

field vector. The first equation is the actuator equation, while the second one is the sensor equation.

Assuming plane-stress case the elements of equation (1.1) can be expressed as

$$\mathbf{s} = \begin{bmatrix} \frac{1}{E_{1}} & -\frac{V_{12}}{E_{1}} & 0\\ -\frac{V_{12}}{E_{1}} & \frac{1}{E_{1}} & 0\\ 0 & 0 & \frac{2(1+V_{12})}{E_{1}} \end{bmatrix}$$

$$d = \begin{bmatrix} 0 & 0 & d_{31}\\ 0 & 0 & d_{32}\\ 0 & 0 & 0 \end{bmatrix}$$

$$\delta = \begin{bmatrix} \grave{o}_{1} & 0 & 0\\ 0 & \grave{o}_{22} & 0\\ 0 & 0 & \grave{o}_{33} \end{bmatrix}$$

$$(1.2)$$

With some manipulations, the actuator equation can be transformed into another simplified formula for elastic analysis

$$\mathbf{\sigma} = \mathbf{Q} \,\mathbf{\varepsilon} - \mathbf{e} \,\mathbf{E} \tag{1.3}$$

Where

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix}$$

$$\mathbf{e} = \begin{bmatrix} 0 & 0 & e_{31} \\ 0 & 0 & e_{32} \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{d} \mathbf{Q}$$
(1.4)