THE EFFECTS OF DIETARY ARTIFICIAL COLORS ON EXPERIMENTAL RATS

Submitted By Fatma Kamal Abd El-Hamid Mohamed

B.Sc. of Science (Biochemistry), Faculty of Women, Ain Shams University, 2002

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

THE EFFECTS OF DIETARY ARTIFICIAL COLORS

ON EXPERIMENTAL RATS

Submitted By
Fatma Kamal Abd El-Hamid Mohamed
B.Sc. of Science (Biochemistry), Faculty of Women, Ain Shams University,

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Sciences Has been Approved

Name Signature

1-Prof. Dr. Hala Ibrahim Awad Allah

Prof. of Community Medicine & Environment, Head of Department of

Environmental Medical Sciences

Institute of Environmental Studies & Research

Ain Shams University

2-Prof. Dr. Effat Abdo Ahmed Afifi

Prof. and Head of Unit Alone

National Institute of Nutrition

3-Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies & Research

Ain Shams University

THE EFFECTS OF DIETARY ARTIFICIAL COLORS ON EXPERIMENTAL RATS

Submitted By

Fatma Kamal Abd El-Hamid Mohamed

B.Sc. of Science (Biochemistry), Faculty of Women, Ain Shams University, 2002

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Science

Department of Environmental Basic Science

Under The Supervision of:

1-Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies & Research

Ain Shams University

2-Prof. Dr. Azza Omar Lotfy

Prof. of Environmental Medical Sciences

National Institute of Nutrition

<u>Acknowledgements</u>

First and foremost thanks are to GOD the most Gracious and The most Merciful, without his aid this work couldn't be done.

I am greatly honored to express my sincere gratitude to the supervisor of. **Prof. Dr. Mahmoud Ahmed Ibrahim Hewehy**

Professor of Public Health Ain Shams University for giving me the opportunity to work under his supervision, interest, indispensable advice and valuable comments.

I am profoundly grateful to **Prof. Dr. Azza Omar** Lofty Assistant professor of Environmental Medical Sciences for her continuous assistance, great help in biological and biochemical procedures and encouragement throughout this work.

My deepest thanks also due to **Prof Dr. Mohamed Abd Elmoniem** Prof of nutritional Biochemistry, for his kind help and sacrificing most of his valuable time.

Also, I wish to express my thanks to my kind family for their encouragement and kind help.

Fatma Kamal

Cairo, Egypt

CONTENTS

Subject	Page
ACKNOWLEDGEMENT	I
CONTENTS	III
LIST Of TABLES	IV
LIST OF FIGURES	V
ABBREVIATION	X
ABSTRACT	1
CHAPTER 1	
1-Introduction	2
Aim of study	5
2- Review of Literature	6
2-1 Food additives	7
2-2 Color as food additives	8
2-3 Natural colorants agents	9
2-4 -Synthetic food coloring agents	10
2-4-1 Tartrazine	11
2-4-2 Carmoisine	14
2-4-3 Brilliant blue	16
2-5 Toxicity of food colorants	18
2-6 Health Aspects of food colorants	20
a- Behavioral Changes Related to food	20
colorants	
b- Effect of Colorants on Body Weight	22
c- Hematological and biochemical effects of	25
food colorants	
CHAPTER 2	
2- Materials and Methods	26
2-1 Materials	26
2-2 Methods	27
2-2- a- Experimental design	27

Subject	Page
2-2- b-Biological evaluation	29
2-2- c- Biochemical analysis	29
i- Liver function	29
ii-Kidney Function	31
iii-Determination of cholesterol	33
iv-Determination of Serum Triglycerides	33
v-Determination of Serum HDL	34
vi-Determination of Serum Hemoglobin	35
vii- Determination of Serum Glucose	35
CHAPTER	
RESULTS	
CHAPTER	
DISCUSSION	91
SUMMARY	99
RECOMMENDATION	104
REFERENCES	105
APPENDIX	126
ARABIC SUMMARY	1-2

LIST OF TABLES

Table No.	Subject	Page no.
Table 1	Effect of Food Colorants on Body Weight Gain (BWG), Food Intake (FI) And Feed Efficiency Ratio (FER) in Rats After Two months.	39
Table2	Effect of Food Colorants on Body Weight Gain (BWG) ,Food Intake (FI) And Feed Efficiency Ratio(FER) in Rats After Three Months	42
Table 3	Effect of Food Colorants on Liver Function in Male Albino Rats after Two Months	46
Table 4	Effect of Food Colorants on Liver Function in Male Albino Rats after three Months	48
Table 5	Effect of Food Colorants on Kidney Function in Male Albino Rats After two Months	53
Table 6	Effect of Food Colorants on Kidney Function in Male Albino Rats After Three Months	55
Table 7	Effect of Food Colorants on Lipid Profile in Male Albino Rats After Two Months	60
Table 8	Effect of Food Colorants on Lipid Profile in Male Albino Rats After three Months	62
Table 9	Effect of Food Colorants on Hemoglobin and glucose in Male Albino Rats After Two Months	68
Table 10	Effect of Food Colorants on Hemoglobin and glucose in Male Albino Rats After three Months	70

LIST OF FIGURES

Fig .No	Subject	Page No.
Figure 1	Chemical structure of Tartrazine	12
Figure 2	Chemical structure of Carmoisine	14
Figure 3	Chemical structure of brilliant blue	16
Figure 4	Effect of food Colorants on Body Weight Gain (BWG), Food Intake (FI) And Feed Efficiency Ratio (FER) in rats After two months.	43
Figure 5	Effect of food Colorants on Body Weight Gain (BWG), Food Intake (FI) And Feed Efficiency Ratio (FER) in rats After three months.	44
Figure 6	Effect of Food Colorants on AST in Male Albino Rats After two and three Months	49
Figure 7	Effect of Food Colorants on ALT in Male Albino Rats After two and three Months	50
Figure 8	Effect of Food Colorants on ALK in Male Albino Rats After two and three Months	51
Figure 9	Effect of Food Colorants on Urea in Male Albino Rats After two and three Months	56
Figure 10	Effect of Food Colorants on creatinine in Male Albino Rats After two and three Months	57
Figure 11	Effect of Food Colorants on uric acid in Male Albino Rats After two and three Months	58
Figure 12	Effect of Food Colorants on cholesterol in Male Albino Rats After two and three Months	63

Fig .No	Subject	Page No.
Figure 13	Effect of Food Colorants on triglyceride in Male Albino Rats After two and three Months	64
Figure 14	Effect of Food Colorants on HDL in Male Albino Rats After two and three Months	65
Figure 15	Effect of Food Colorants on LDL in Male Albino Rats After two and three Months	66
Figure 16	Effect of Food Colorants on Hemoglobin in Male Albino Rats After two and three Months	71
Figure 17	Effect of Food Colorants on Glucose in Male Albino Rats After two and three Months	72

LIST OF PHOTO

Photo No.	Subject	Page No.
Photo 1	Liver of rat from group 1 showing the normal histological structure of hepatic lobule (H & E X 400).	75
Photo 2	Liver of rat from group 2 showing hydropic degeneration of hepatocytes and fibroplasia around the bile duct (H & E X 400).	76
Photo 3	Liver of rat from group 2 showing congestion of central vein and activation of Kupffer cells (H & E X 400).	76
Photo 4	Liver of rat from group 3 showing cytoplasmic vacuolization of hepatocytes (H & E X 400).	77
Photo 5	Liver of rat from group 3 showing congestion of hepatic sinusoids (H & E X 400).	77
Photo 6	Liver of rat from group 4 showing cytoplasmic vacuolization of hepatocytes (H & E X 400).	78
Photo 7	Liver of rat from group 4 showing fibroplasia around the bile duct (H & E X 400).	78
Photo 8	Liver of rat from group 5 showing fibroplasia in the portal triad (H & E X 400).	79
Photo 9	Liver of rat from group 5 showing slight cytoplasmic vacuolization of hepatocytes and sinusoidal leucocytosis (H & E X 400).	79
Photo 10	Liver of rat from group 6 showing cytoplasmic vacuolization of hepatocytes and congestion of central vein (H & E X 400).	80
Photo 11	Liver of rat from group 6 showing fibroplasia around the bile duct (H & E X 400).	80

Photo No.	Subject	Page No.
Photo 12	Liver of rat from group 7 showing slight cytoplasmic vacuolization of hepatocytes and congestion of central vein (H & E X 400).	81
Photo 13	Liver of rat from group 7 showing slight cytoplasmic vacuolization of hepatocytes and sinusoidal leucocytosis (H & E X 400).	81
Photo 14	Kidney of rat from group 1 showing the normal histological structure of renal parenchyma (H & E X 400).	82
Photo 15	Kidney of rat from group 2 showing vacuolation of epithelial lining renal tubules and congestion of glomerular tuft (H & E X 400).	83
Photo 16	Kidney of rat from group 3 showing no histopathological changes (H & E X 400).	83
Photo 17	Kidney of rat from group 4 showing proteinaceous material in the lumen of renal tubules and perivascular oedema (H & E X 400).	84
Photo 18	Kidney of rat from group 5 showing vacuolation of epithelial lining renal tubules and endothelial lining glomerular tuft (H & E X 400).	84
Photo 19	Kidney of rat from group 6 showing vacuolation of epithelial lining renal tubules and endothelial lining glomerular tuft (H & E X 400).	85
Photo 20	Kidney of rat from group 7 showing proteinaceous material in the lumen of renal tubules and vacuolation of endothelial lining glomerular tuft (H & E X 400).	85
Photo21	Spleen of rat from group 1 showing normal lymphoid follicle (H & E X 400).	86

Photo No.	Subject	Page No.
Photo22	Spleen of rat from group 2 showing no histopathological changes (H & E X 400).	87
Photo 23	Spleen of rat from group 3 showing no histopathological changes (H & E X 400).	87
Photo 24	Spleen of rat from group 4 showing no histopathological changes (H & E X 400).	88
Photo 25	Spleen of rat from group 5 showing lymphocytic necrosis and depletion (H & E X 400).	88
Photo 26	Spleen of rat from group 5 showing no histopathological changes (H & E X 400).	89
Photo 27	Spleen of rat from group 6 showing no histopathological changes (H & E X 400).	89
Photo 28	Spleen of rat from group 7 showing no histopathological changes (H & E X 400).	90

LIST OF ABBREVIATIONS

ADHD	Attention –deficit hyperactivity disorder
AFCs	Artificial food colors
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
BWG	Body weight gain
°C	Callouses degree
EDTA	Ethylene Diamine Tetraacetic acid
FER	Feed Efficiency Ratio
FI	Food intake
GIT	Gastro intestinal tract
GOT	Glutamic Oxalacetic transeaminase
GPT	Glutamic pyruvic transaminase
HDL	High density lipoprotein
Hb	Hemoglobin
LDL	Low density lipoprotein
SD	Standard deviation
Sign.	Significance
SPSS	statistical package for social science
TG	Triglyceride
WHO	World Health organization

wt	Weight
ADI	Acceptable Daily Intake

The Effects of Dietary Artificial Colors on Experimental Rats

ABSTRACT

Recently the use of synthetic food coloring additives was increased and the levels of human exposure to such agents are very broad, thus feeding over long periods may continually possess potential hazards to the human health. Evaluation of the toxic effects of synthetic dyes brilliant blue, Tartrazine and Carmoisine were tested in rats by measuring their actions on renal, hepatic function, lipid profile, blood glucose, body-weight gain and hemoglobin concentration. Rats were fed synthetic dyes supplemented diet, daily for 60 and 90 days orally in two doses, one low and the other high dose followed by serum and tissue sample collection for determination of ALT, AST, ALP, urea, creatinine, uric acid, lipid profile, fasting blood glucose in serum and estimation of hemoglobin concentration. Our data showed a significant increase in ALT, AST, ALP, in addition to serum urea and creatinine levels in treated rats, While, they recorded a significant decrease in percentage of body weight change, HB concentration. Histopathological examinations revealed alterations in kidneys include: congestion and proteinaceous material in the lumen of renal tubules and perivascular oedema. Whereas alterations in liver include: focal necrosis of hepatocytes, vacuolation and. hydropic degeneration of hepatocytes and congestion of hepatic sinusoids. Conclusion: We concluded that Tartrazine, Carmoisine and brilliant blue affect adversely and alter biochemical markers in vital organs e.g. liver and kidney not only at higher doses but also at low doses

Keywords: Food coloring additives, brilliant blue, Tartrazine, Carmoisine, Histopathologic.