Study of brainstem auditory affection in Diabetic Patients

Thesis

Submitted for partial fulfillment of Master degree in Neuropsychiatry *By*

Ebrahim Mohammed Mohammed Shabana

M.B.B.Ch (Al-Azhar University- New Damietta)

Under supervision of

Prof. Essam Mahdy Ebrahim

Professor and head of Neurology Department Al-Azhar University- New Damietta

Prof. Gehan Abdel Rahman El Zarea

Professor of Audiology Al-Azhar University-Cairo

Dr. Amir Abdel Ghafar Mohammady Nowar

Lecturer of Neurology Al-Azhar University-Cairo

Dr.Sherief Mahmoud Alsaghier Alshazely

Lecturer of Neurology Al-Azhar University-New Damietta

Dr.Hussein Awad Elghareib

Lecturer of Neurology Al-Azhar University-Cairo

Al-Azhar University Faculty of Medicine

تقييم مدي تأثر المسار السمعي بجذع المخ في مرضى السكري

در اسة تمهيدية توطئة للحصول علي درجة الماجيستير في الأمراض العصبية والنفسية

مقدمة من إبراهيم مجد مجد شبانة بكالوريوس الطب والجراحة جامعة الازهر (دمياط)

تحت إشراف

الأستاذ الدكتور عصام مهدي إبراهيم أستاذ ورئيس قسم أمراض المخ والاعصاب بطب الأزهر (دمياط)

الأستاذ الدكتور جيهان عبد الرحمن الزارع أستاذ أمراض السمعيات والإتزان بطب الأزهر

د أمير عبد الغفار مجدي نوار مدرس أمراض المخ والأعصاب بطب الأزهر

د شريف محمود الشاذلي مدرس أمراض المخ والأعصاب بطب الأزهر (دمياط)

د حسين عوض الغريب مدرس أمراض المخ والأعصاب بطب الأزهر

Abstract

Diabetic community is vast enough, giving researchers a very good reason to explore more in their world. One of their rarely probed complications is brainstem dysfunction. In this study, we investigated brainstem auditory evoked potential studies (BAEPs) in diabetic patients, as well as its associations with diabetic complications, especially diabetic microangiopathy. Our study was conducted on 40 diabetic patients having type I or type II. They were classified into two groups; group I (< 5 years duration of illness) and group II (> 5 years duration of illness). Their ages ranged from 20 to 59 years. The patients were examined clinically, neurologically and electrophysiologically. Brainstem auditory evoked potential studies, nerve conduction studies and flash electroretinography were performed to all patients. Urine analysis, instantaneous random blood sugar and funduscopy were also performed for patients. The brainstem auditory evoked potential studies of patients were compared to values of 30 normal subjects and their ages ranged, also, from 20 to 59 years. The diabetic patients experience brainstem dysfunction early in their disease course (before 5 years duration of the illness) that is increased as the disease duration increases. This dysfunction is evident by significant delay of wave V in diabetic patients as compared to normal individuals. Later, after 5 years duration of the illness, delay of wave III, further delay of wave V, prolongation of I-V IPL and decrease in amplitude of wave V occur. Diabetes type, I or II, has no different effect on BAEPs results.

Microangiopathic complications (retinopathy and nephropathy) are associated with increasing hearing threshold in diabetic patients, mainly after 5 years duration of the illness. Wave III is significantly delayed in presence of diabetic retinal affection; functionally and by funduscopy. Also, wave V is significantly delayed, in pat

.ients with abnormal skin and peripheral nervous system manifestations. In addition, wave V latency and III-V IPL are prolonged in patients having cardiovascular affection symptoms and postural hypotension. Finally, in patients with sweating abnormalities, wave I amplitude is significantly increased.

So brainstem dysfunction occurs early in the course of diabetes (type I and II similarly) and it is further affected by its duration. It starts by affection at the midbrain level (inferior colliculus) then proceeds by time to lower levels; caudal pons (cochlear nucleus). Also, as diabetic microangiopathic complications occur, hearing threshold increases. Retinopathy is accompanied with brainstem disintegration, at the caudal pons level. In three situations, we questioned the occurrence of similar pathogenesis theories, intracranially and extracranially. First, diabetic patients, with abnormal skin or peripheral nervous system manifestations, experience midbrain dysfunction (in the vicinity of the inferior colliculus) as well. The presumed theory if microvascular or, less likely, autoimmune affection. Second, diabetic patients with cardiovascular affection symptoms and postural hypotension show retrocochlear dysfunction. The doubted theory is macrovascular affection.

Finally, diabetic patients with sweating abnormalities show evidence of affection of olivocochlear bundle. The probable theory is small fiber neuropathy.

Keywords: Microangiopathic – Retinopathy – Nephropathy – Diabetic community

Contents

			Page
Acknowled	lge	ment	I
List of Tab	les		III
List of Figu	ıre	s	VIII
List of abbi	rev	riations	X
Introductio	n a	and aim of the work	1
Review of	Li	terature	
	0	Chapter (1): Diabetes from the medical point of view	3
	0	Chapter (2): Diabetic complications	13
	0	Chapter (3): Electrophysiology; BAEPs, NCSs, f-ERG	40
		-Tables for normative data 64	
	0	Chapter (4): Electrophysiological findings in diabetics	68
Materials a	an	d methods 85	
Results			97
Discussion	١		146
Summary	an	d Recommendation	155
References	S .		158
Appendix.			
Arabic sur	nn	narv	

List of abbreviations

ABR	Auditory Brainstem Response
ADP	Adenosine Di-Phosphate
AGEs	Advanced Glycation Endproducts
ATP	Adenosine Tri-Phosphate
AST	Aspartate transaminases
BAEP	Brainstem Auditory Evoked Potentials
CMAP	Compound Motor Action Potential
CTT	Central Transmission Time
DCCT	Diabetes Control and Complication Trial
dB	deci-Bels
DKA	Diabetic Ketoacidosis
DM	Diabetes Mellitus
DNA	Deoxy Ribo Nucleic acid
FPG	Fasting Plasma Glucose
GAD	Glutamate Decarboxylse
GAPDH	Glut-Amide Phosphodehydrogenase
HbA1c	glycoselated Heamoglobin A1c
IAA	Insulin Autoantibodies
IC	Inferior Colliculus
ICA	Islet Cell Antibodies
IDDM	Insulin Dependent Diabetes Mellitus
IPL	Inter Peak Latency
LADA	Latent Autoimmune Diabetes of the Adult
LL	Lateral Leminscus
MGB	Medial Geniculate Body
MI	Myocardial Infarction
MNCS(s)	Motor Nerve Conduction Study (ies
MODY	Maturity Onset Diabetes of the Young
msec	Milli second
NAD	Nicotine-Amide Adenine Di-nucleutide
NCS(s)	Nerve Conduction Study(ies)
NCV(s)	Nerve Conduction Velocity(ies)
nHL	normal Hearing Level
NOS	Nitric Oxide synthase

PTN	Posterior Tibial Nerve
PTT	Peripheral Transmission Time
SD	Standard Deviation
SNAP	Sensory Nerve Action Potential
SNCS(s	Sensory Nerve Conduction Study(ies)
SNCV	Sensory Nerve Conduction Velocity
SOC	Superior olivary complex
μV	Micro-Volt

List of tables

n.	Title	Page
1	Classification of Diabetes mellitus	4
2	Classification of diabetic neuropathies	12
3	Electrode placement and stimulating sites for nerve conduction	39
	studies in the upper limbs	
4	Electrode placement and stimulating sites for nerve conduction	39
	studies, in the lower limbs	
5	Total number of subjects, mean age (and standard deviation) and	43
	male/female ratio	4.4
6	Mean age (and standard deviation) in both patient groups	44
7	Male/Female ratio in both patient groups	45
8	Diabetes duration in years	46
9	Medical history data in different patient groups	47
10	General examination data, in different patient groups	49
11	Peripheral neurological signs	51
12	comparison between Mean average pure tone hearing threshold in	52
12	control group and group I	<i>5</i> 4
13	comparison between Mean average pure tone hearing threshold in	54
1.4	control group and group IIa	<i>E</i> (
14	comparison between Mean average pure tone hearing threshold in	56
15	control group and group IIb	58
13	comparison between Mean average pure tone hearing threshold in IIa group and group IIb	38
16	BAEPs results in male patients, compared to female ones	61
17	Comparison between BAEPs readings in patients with group I and	62
1 /	control group	02
18	Comparison of BAEPs results between controls and groupIIa	64
19	Comparison between Group IIb and control group as regard AEP	66
	waves	
20	BAEPs results in patients having abnormal autonomic symptoms,	68
	compared to normal ones	
21	BAEPs results in patients having cardiological affection, compared	70
	to those with none	
22	BAEPs results in patients having skin affection, compared to those	71
	with no affection	
23	Diabetes control in different patient groups	72
24	Comparison between BAEPs readings in patients with controlled,	73
	compared to uncontrolled diabetes	
25	Mean (standard deviation) and P value of nerve conduction study	76
	readings of upper limbs	
26	Mean (standard deviation) and P value of nerve conduction study	77
	readings of lower limbs, in different patient groups	

List of figures

n.	Title	Page
1	clinical types of diabetic neuropathy	12
2	Anatomy of auditory pathway	20
3	Short-latency brainstem auditory evoked responses	21
4	normal Auditory brain stem response	22
5	Axonal degeneration and demylination effect on nerve conduction studies	29
6	Nerve conduction velocities (normal and abnormal).	30
7	F- response; Common peroneal nerve (left) and Posterior tibial nerve (Right)	31
8	Sensory nerve Action potential	32
9	normal audiogram	41
10	distribution of gender in study groups	43
11	distribution of gender in patient groups	45
12	autonomic symptoms in patient groups	48
13	cardiovascular symptoms in patient groups	48
14	incidence of diabetic skin complication in patient groups	50
15	mean systolic&diastolic in patient groups	50
16	average pure tone hearing threshold in control group and group I	53
17	Mean average pure tone hearing threshold in control group and group IIa	55
18	Mean average pure tone hearing threshold in control group and group IIb	57
19	Mean average pure tone hearing threshold in IIa group and group IIb.	58
20	correlation between age and III-V IPL	59
21	correlation between age and V latency	60
22	latency and IPL in group I and control group	63
23	waves amplitude in patient group I and control group	63
24	latency and IPL in group IIa and control group	65
25	waves amplitude in group IIa and control group	65

26	latency and IPL between group IIb and control group	67
27	waves amplitude in group IIb and control group	67
28	latency and IPL in controlled and uncontrolled groups	74
29	waves amplitude in controlled and uncontrolled groups	75

Introduction

Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia, which is a result of alteration in the secretion and or action of insulin Type 1 DM is due to pancreatic islet Beta cell destruction predominantly by an autoimmune process, and these patients are prone to ketoacidosis (DKA). Type 2 DM is the more prevalent form and results from insulin resistance with a defect in compensatory insulin secretion (**Tahrani etal.,2011**).

Neuropathy is one of the most frequent complications of DM. Diabetic neuropathy can usually be detected as autonomic and peripheral nerve impairment in the early period of DM (Clements et al, 2008); however, data in the literature have demonstrated the involvement of the central nervous system in diabetic patients (**Donald etal., 2002**).

Brainstem auditory evoked potentials (BAEPs) or auditory brainstem response (ABR) are small electrical voltage potentials which are recorded in response to an auditory stimulus from electrodes placed on the scalp. They reflect neuronal activity in the auditory pathway. ABR can be used to trace the signal generated by a sound through the ascending auditory pathway. The evoked potential is generated in the cochlea, goes through the cochlear nerve, through the cochlear nucleus, superior olivary complex, lateral lemniscus, to the inferior colliculus in the midbrain, on to the medial geniculate body, and finally to the cortex. (Baran., 2007).

BAEPs is a simple, non-invasive procedure for detecting subclinical impairment of the auditory pathway and can be used for analyzing the influence of diabetic neuropathy on the auditory system.

Aim of the study

The aim of this study is to evaluate the hearing function in homogenous group of diabetic patients:-

- 1- To assess the usefulness of auditory brainstem response (ABR) in the early detection of subclinical pathological changes in the auditory pathway in diabetic patients.
- 2- To detect possible correlation between alteration of the auditory brainstem function and peripheral neuropathy as other clinical manifestations of DM.

Review of Literature