

Biological studies on some aquatic crustaceans as related to culture.

A Thesis Submitted BY

Ahmed Nasr Mohammed Al- Abssawy

Assistant lecture of Marine Biology and Fishes Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo.

To
Zoology Department
Faculty of Science, Al-Azhar University
For the Award of Ph.D. Degree in Zoology

Supervised by

Prof. Dr. Khalid A. El-DamhogyProfessor of invertebrate, Marine
Biology and Fishes Branch, Zoology
Department, Faculty of Science, AlAzhar University, Cairo.

Prof. Dr. Mohamed A. Zaki
Professor of Fish Husbandry and
Head of Animal and Fish
Production Department, Faculty
of Agriculture, Alexandria
University.

Dr. Amr M. Nasef

Lecture of Marine Ecology, Marine Biology and Fishes Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo.

Cairo **2014**

ACKNOWLEDGEMENT

Firstly and lastly, all praise is to **ALLAH**, AL-Raof AL-Raheem, without his mercy and guidance this work has been neither started nor completed. I thank ALLAH as much as the heavens and earth and what is in between or behind for all gifts, which he has given to me.

Words cannot express my profound gratitude to *Prof. Dr. Khalid A. El-Damhogy*, Professor of Invertebrate in Marine Biology and Fishes Sector, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, for suggesting the point and principal role in planning this work, helpful guidance, invaluable suggestions, contractive criticism and for critical reading of the manuscript. his guidance helped me in all the time of research and writing of this thesis.

Also words cannot express my profound gratitude to *Prof. Dr. Mohamed A. Zaki*, Professor of Fish Husbandry and head of Animal and fish Production Department, Faculty of Agriculture (Shatby), Alexandria University, for suggesting the point and principal role in planning this work, helpful guidance, invaluable suggestions, contractive criticism and for critical reading of the manuscript. his guidance helped me in all the time of research and writing of this work.

My sincere thanks also to *Prof. Dr. Atef A. El-Hela*, Professor and Head of Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo for his remarkable assistance as well as giving me much experience value advice, continuous encouragement and for the facilities he has kindly supplied.

The Author is also particularly grateful to *Dr. Amr M. Nasef*; Lecture of Marine Ecology in Marine Biology and Fishes Sector, Zoology Department, Faculty of Science, Al-Azhar

University, Cairo. Many thanks are due to all staffs of Zoology Department, Faculty of Science, Al-Azhar University for their encouragement. Thanks are also due to several colleagues and friends in the same department.

Lastly, I would like to record my deepest gratitude to my family for giving me all support needed to complete this modest work.

Words could not express the feeling of gratitude and respect I carry to Prof. Dr. Awwad Abdo Elsayed; the head of Zoology Department.

Contents

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	9
PRAWN ECOLOGY AND FEEDING HABITS	10
LIFE CYCLE	15
SPAWNING	16
LARVAE	18
POST LARVAE	22
ADULT STAGE	25
PROTEIN AND AMINO ACIDS REQUIREMENTE	29
LIPID AND FATTY ACIDS REQUIREMENT	33
CARBOHYDRATES REQUIREMENT	40
MINERALS REQUIREMENT	42
VITAMINES REQUIREMENT	46
ARTEMIA AS NATURAL FOOD	48
WATER QUALITY	52
PRAWN IMMUNITY AND DISEASE	64
PROBIOTICS AND EXTRACTS	67
POLYCULTURE OF FRESH WATER PRAWN AND TILAP	PIA73
STOCKING DENSITY	77

MATERIAL AND METHODS	78
FIRST EXPERIMENT	78
SECOND EXPERIMENT	80
THIRD EXPERIMENT	82
FIFTH EXPERIMENT	84
EXPERIMENTAL DIETS	86
BODY COMPOSITION ANALYSIS	87
RESULTS	94
FIRST EXPERIMENT	94
SECOND EXPERIMENT	103
THIRD EXPERIMENT	128
FOURTH EXPERIMENT	145
FIFTH EXPERIMENT	153
DISCUSSION	203
SUMMARY	222
REFERENCES	232
ARABIC SUMMARY	

<u>Figures</u>

Figures Name	Page
Figure (1): GLC analysis of lipoidal matter in peanuts, Arachis	100
hypogaea (A).	100
Figure (2): GLC analysis of lipoidal matter in sesames, Sesamum	101
indicum (B).	101
Figure (3): GLC analysis of lipoidal matter in sun flower seeds,	102
Helianthus annuus (C).	
Figure (4): Effect of different plant extracts on average daily gain of	108
M. rosenbergii exposed to light.	
Figure (5): Effect of different plant extracts on specific growth rate of	108
M. rosenbergii exposed to light.	
Figure (6): Effect of different plant extracts on feed intake of <i>M</i> .	112
rosenbergii exposed to light.	
Figure (7): Effect of different plant extracts on protein intake of M .	112
rosenbergii exposed to light.	
Figure (8): Effect of different plant extracts on food conversion ratio of	113
M. rosenbergii exposed to light.Figure (9): Effect of different plant extracts on protein efficiency ratio	
of <i>M. rosenbergii</i> exposed to light.	113
Figure (10): Effect of different plant extracts on protein productive	
value of <i>M. rosenbergii</i> exposed to light.	114
Figure (11): Effect of different plant extracts on energy utilization of	114
M. rosenbergii exposed to light.	114
Figure (12): Effect of different plant extracts on dry matter of <i>M</i> .	117
rosenbergii exposed to light.	
Figure (13): Effect of different plant extracts on crude protein of <i>M</i> .	117
rosenbergii exposed to light.	
Figure (14): Effect of different plant extracts on ether extract of <i>M</i> .	118
rosenbergii exposed to light.	
Figure (15): Effect of different plant extracts on ash of <i>M. rosenbergii</i>	118
exposed to light.	
Figure (16): Effect of different plant extracts on energy content of <i>M</i> . <i>rosenbergii</i> exposed to light.	119
Figure (17): Effect of different plant extracts on survival rate of <i>M</i> .	
rosenbergii exposed to light.	120
Figure (18): Effect of different plant extracts on average daily gain of	
M. rosenbergii isolated from light.	129

Figure (19): Effect of different plant extracts on specific growth rate of <i>M. rosenbergii</i> isolated from light.	129
Figure (20): Effect of different plant extracts on feed intake of <i>M</i> .	130
rosenbergii isolated from light.	130
Figure (21): Effect of different plant extracts on protein intake of <i>M</i> .	130
rosenbergii isolated from light.	130
Figure (22): Effect of different plant extracts on food conversion ratio of <i>M. rosenbergii</i> isolated from light.	131
Figure (23): Effect of different plant extracts on protein efficiency ratio of <i>M. rosenbergii</i> isolated from light.	131
Figure (24): Effect of different plant extracts on protein productive	
value of <i>M. rosenbergii</i> isolated from light.	132
Figure (25): Effect of different plant extracts on energy utilization of <i>M. rosenbergii</i> isolated from light.	132
Figure (26): Effect of different plant extracts on dry matter of <i>M</i> .	133
rosenbergii isolated from light.	133
Figure (27): Effect of different plant extracts on crude protein of <i>M</i> .	133
rosenbergii isolated from light.	
Figure (28): Effect of different plant extracts on ether extract of <i>M</i> . <i>rosenbergii</i> isolated from light.	134
Figure (29): Effect of different plant extracts on ash of <i>M. rosenbergii</i>	124
isolated from light.	134
Figure (30): Effect of different plant extracts on energy content of <i>M</i> .	125
rosenbergii isolated from light.	135
Figure (31): Effect of different plant extracts on survival rate of <i>M</i> . <i>rosenbergii</i> isolated from light.	136
Figure (32): Effect of different stocking density on gain weight of <i>M</i> .	155
rosenbergii in polyculture system.	157
Figure (33): Effect of different stocking density on average daily gain of <i>M. rosenbergii</i> in polyculture system.	157
Figure (34): Effect of different stocking density on specific growth rate	158
of M. rosenbergii in polyculture system.	130
Figure (35): Effect of different stocking density on feed intake of <i>M</i> .	162
rosenbergii in polyculture system.	
Figure (36): Effect of different stocking density on protein intake of <i>M. rosenbergii</i> in polyculture system.	162
Figure (37): Effect of different stocking density on food conversion	163
ratio of <i>M. rosenbergii</i> in polyculture system.	103
Figure (38): Effect of different stocking density on protein efficiency ratio of <i>M. rosenbergii</i> in polyculture system.	163
ratio of m. rosenvergu in poryculture system.	

Figure (39): Effect of different stocking density on protein productive	164
value of <i>M. rosenbergii</i> in polyculture system.	164
Figure (40): Effect of different stocking density on energy utilization	164
of <i>M. rosenbergii</i> in polyculture system.	104
Figure (41): Effect of different stocking density on dry matter of <i>M</i> .	167
rosenbergii in polyculture system.	107
Figure (42): Effect of different stocking density on crude protein of <i>M</i> .	168
rosenbergii in polyculture system.	100
Figure (43): Effect of different stocking density on ether extract of <i>M</i> .	168
rosenbergii in polyculture system.	100
Figure (44): Effect of different stocking density on ash of <i>M</i> .	169
rosenbergii in polyculture system.	109
Figure (45): Effect of different stocking density on energy content of	169
M. rosenbergii in polyculture system.	109
Figure (46): Effect of different stocking density on survival rate of <i>M</i> .	171
rosenbergii in polyculture system.	1/1
Figure (47): Effect of different stocking density on final weight of Red	171
hybrid tilapia in polyculture system.	1/1
Figure (48): Effect of different stocking density on gain weight of Red	172
hybrid tilapia in polyculture system.	172
Figure (49): Effect of different stocking density on average daily gain	172
of Red hybrid tilapia in polyculture system.	172
Figure (50): Effect of different stocking density on specific growth rate	173
of Red hybrid tilapia in polyculture system.	173
Figure (51): Effect of different stocking density on feed intake of Red	173
hybrid tilapia in polyculture system.	173
Figure (52): Effect of different stocking density on protein intake of	174
Red hybrid tilapia in polyculture system.	174
Figure (53): Effect of different stocking density on food conversion	174
ratio of Red hybrid tilapia in polyculture system.	174
Figure (54): Effect of different stocking density on protein efficiency	175
ratio of Red hybrid tilapia in polyculture system.	1/3
Figure (55): Effect of different stocking density on protein productive	175
value of Red hybride tilapia in polyculture system.	175
Figure (56): Effect of different stocking density on energy utilization	176
of Red hybrid tilapia in polyculture system.	1/0
Figure (57): Effect of different stocking density on dry matter of Red	176
hybrid tilapia in polyculture system.	1/0
Figure (58): Effect of different stocking density on crude protein of	177
Red hybrid tilapia in polyculture system.	1//

Figure (59): Effect of different stocking density on ether extract of Red hybrid tilapia in polyculture system.	177
Figure (60): Effect of different stocking density on ash of Red hybrid tilapia in polyculture system.	178
Figure (61): Effect of different stocking density on energy content of	
Red hybrid tilapia in polyculture system.	178
Figure (62): Effect of different stocking density on survival rate of Red	179
hybrid tilapia in polyculture system.	2.,
Figure (63): Effect of different stocking density on final weight of <i>M</i> .	183
rosenbergii and Red tilapia in polyculture system.	
Figure (64): Effect of different stocking density on gain weight of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	183
Figure (65): Effect of different stocking density on average daily gain	
of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	184
Figure (66): Effect of different stocking density on specific growth rate	104
of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	184
Figure (67): Effect of different stocking density on feed intake of <i>M</i> .	188
rosenbergii and Red tilapia in polyculture system.	100
Figure (68): Effect of different stocking density on protein intake of <i>M</i> .	188
rosenbergii and Red tilapia in polyculture system.	100
Figure (69): Effect of different stocking density on food conversion	189
ratio of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	109
Figure (70): Effect of different stocking density on protein efficiency	189
ratio of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	
Figure (71): Effect of different stocking density on protein productive	190
value of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	
Figure (72): Effect of different stocking density on energy utilization	190
of <i>M. rosenbergii</i> and Red tilapia in polyculture system.	
Figure (73): Effect of different stocking density on dry matter of <i>M</i> . <i>rosenbergii</i> and Red tilapia in polyculture system.	193
Figure (74): Effect of different stocking density on crude protein of <i>M</i> .	
rosenbergii and Red tilapia in polyculture system.	193
Figure (75): Effect of different stocking density on ether extract of <i>M</i> .	104
rosenbergii and Red tilapia in polyculture system.	194
Figure (76): Effect of different stocking density on ash of <i>M</i> .	104
rosenbergii and Red tilapia in polyculture system.	194
Figure (77): Effect of different stocking density on energy content of	195
M. rosenbergii and Red tilapia in polyculture system.	1/3

<u>Tables</u>

Table Name	Page
Table (1): Salinity requirement and different time phases need to development for <i>Macrobrachium rosenbergii</i> .	19
Table (2): Water quality requirements for freshwater prawn nursery and grow-out facilities.	62
Table (3): Percentage composition of the artificial diet consumed by the prawn and fish cultivated in lab experiments.	92
Table (4): Dietary levels of minerals per mg/kg in lab experiment.	92
Table (5): Dietary levels of vitamins per Kg in lab experiment.	93
Table (6): Gas Chromatograph analysis of lipoidal matter of plant extracts.	97
Table (7): Qualitative estimation of lipoidal content of plant extracts.	98
Table (8): Quantitative estimation of lipoidal content of plant extracts.	99
Table (9): The percentage composition of the artificial (tested) diets utilized in the second laboratory experiments.	121
Table (10): Effect of different plant extracts on the growth performance of <i>M. rosenbergii</i> , post larva.	122
Table (11): Analysis of variance (mean square) of growth performance of <i>M. rosenbergii</i> , post larva fed on diets containing different treatment of plant extracts.	123
Table (12): Effect of different plant extract treatments on feed and nutrient utilization parameters of <i>M. rosenbergii</i> , post larva.	124
Table (13): Analysis of variance (mean square) of feed and nutrient utilization of <i>M. rosenbergii</i> , post larva fed on diets containing different treatment of plant extracts.	125
Table (14): Effect of different plant extract treatments on chemical composition of the whole body parameters of <i>M. rosenbergii</i> , post larva.	126
Table (15): Analysis of variance (mean square) of body composition and energy content of the whole body of <i>M. rosenbergii</i> , post larva fed on diets containing different treatment of plant extracts.	127
Table (16): The percentage composition of the artificial (tested) diets utilized in the third laboratory experiments.	137
Table (17): Effect of different plant extract treatments on growth performance parameter of <i>M. rosenbergii</i> , post larva isolated from light.	138
Table (18): Analysis of variance (mean square) of growth performance parameter of <i>M. rosenbergii</i> , post larva isolated from light fed on diets containing different treatment of plant extracts.	139
Table (19): Effect of different plant extract treatments on feed intake and nutrient utilizations of <i>M. rosenbergii</i> , post larva isolated from light.	140

Table (20): Analysis of variance (mean square) of feed and nutrient utilizations of <i>M. rosenbergii</i> , post larva isolated from light and feeding with diets containing different treatment of plant extracts.	141
Table (21): Effect of different plant extract treatments on body	
composition and energy content of the whole body parameters of M .	142
rosenbergii, post larva isolated from light.	
Table (22): Analysis of variance (mean square) of body composition and	
energy content of the whole body of M. rosenbergii, post larva isolated	143
from light feeding with diets containing different treatment of plant	143
extracts.	
Table (23): survival rate of fresh water prawn, M. rosenbergii, post larva	144
with different plant extracts against control in ² nd and ³ rd experiments.	144
Table (24): Antifungal test of (A), (B) and (C) extracts.	148
Table (25): Antibacterial test of (A), (B) and (C) extracts.	149
Table (26): Effect of five stocking density ratios between red hybrid	
tilapia (Oreochromis sp.) and fresh water prawn, M. rosenbergii, post	196
larva on the growth performance.	
Table (27): Analysis of variance (mean square) of growth performance	
parameter of red hybrid tilapia (<i>Oreochromis sp.</i>) and fresh water	40-
prawn, <i>M. rosenbergii</i> , post larva with different treatments of stocking	197
density.	
Table (28): Effect of five stocking density ratios on feed intake and	
nutrient utilizations of red hybrid tilapia (Oreochromis sp.) and fresh	198
water prawn, M. rosenbergii, post larva.	
Table (29): Analysis of variance (mean square) of feed and nutrient	
utilizations of red hybrid tilapia (<i>Oreochromis sp.</i>) and fresh water	400
prawn, M. rosenbergii, post larva with different treatments of stocking	199
density.	
Table (30): Effect of five stocking density ratios on body composition and	
energy content of whole body parameters of red hybrid tilapia	200
(Oreochromis sp.) and fresh water prawn, M. rosenbergii, post larva.	_00
Table (31): Analysis of variance (mean square) of body composition of	
the whole body of red hybrid tilapia (<i>Oreochromis sp.</i>) and fresh water	•04
prawn, <i>M. rosenbergii</i> , post larva with different treatments of stocking	201
density.	
Table (32): survival rate of red hybrid tilapia (<i>Oreochromis sp.</i>) and	
fresh water prawn, M. rosenbergii, post larva with five stocking density	202
ratios against control.	_

Abbreviations

A: Peanuts, Arachis hypogaea extract.

ADG: Average Daily Gain.

A.O.V: Analysis Of Variance.

B: Sesames, Sesamum indicum extract.

BW: Body Weight.

C: Sun flower seeds, Helianthus annuus extract.

CF: Crude Fiber.

CP: Crude Protein.

C.V: Coefficient of Variation.

DM: Dry Matter.

ECO: Energy Content.

EE: Ether Extract (Crude Fat).

EU: Energy Utilization.

FAO: Food and Agricultural Organization.

FDA: Food and Drug Administration.

FI: Feed Intake.

Fi W: Final Weight.

FW: Final Weight.

FWP: Fresh Water Prawn.

GC: Gas Chromatograph.

GE: Growth Energy

GLC: Gas Liquid Chromatograph.

GW: Gain Weight.

In W: Initial Weight.

Kcal: Kilo Calories

L.S.D: Least Significant Differences.

M. rosenbergii: Macrobrachium rosenbergii.

NA: No Activity.

NFE: Nitrogen Free Extract (Carbohydrate).

P: Prawns.

(**P<0.05**): Probability.

PI: Protein Intake.

PER: Protein Efficiency Ratio.

P/E: Protein/ Energy Ratio.

PL: Post Larvae.

PPV: Protein Productive Value.

RCMB: Regional Center for Mycology and Biotechnology antimicrobial unit test organisms.

RT: Red hybrid Tilapia (*Oreochromis sp*).

SD: Stocking Density.

SE: Standard Error.

SGR: Specific Growth Rate.

SR: Survival Rate.

TA: Type of Animal.

TWG: Total Weight Gain.

INTRODUCTION

The fresh water prawn, *Macrobrachium rosenbergii* (De Man 1879) recorded from tropical and sub tropical waters in most fresh water areas including rivers, lakes, swamps, irrigation ditches, canals and ponds as well as in estuarine areas (Holthis, 1980). It is considered as one of the most important crustacean species produced in inland aquaculture in many tropical and sub-tropical countries (FAO, 2000). This species also is known as the giant river prawn or the Malaysian prawn. It is (as well as other *macrobrachium* species) commercially important owing to its value as food source (Sung *et al.*, 2000 and Sarathi *et al.*, 2008).

Its productivity decline has been reported in some countries and was attributed to inbreeding depression in this species (Mather and de Bruyn, 2003). It was suggested that the declines in productivity in this species is concerned to the industry (Mather and de Bruyn, 2003; Thanh *et al.*, 2009). Thus, growth performance experiments and selective breeding programs were initiated to evaluate the genetic potential for selection of different strains of *M. rosenbergii* (Thanh *et al.*, 2010; Pillai *et al.*, 2011).