ASSESSMENT OF BIODEGRADATION OF POLYNUCLEAR AROMATIC COMPOUNDS USING MICROORGANISMS

By **Dina Fikry Abd Eltawab Elsayed Nwashy**

B.Sc. in Microbiology/Chemistry, 2006

Submitted in partial fulfillment of the requirement for the Degree of master of Science in Microbiology

Supervisors

Prof. Dr. Yousseria M. Hassan Shetaia

Professor of Microbiology (Mycology), Faculty of Science, Ain Shams University

Prof. Dr. Ashraf Y. El-Naggar

Professor of Analytical and Petroleum Chemistry, Egyptian Petroleum Research Institute (EPRI)

Dr. Nashwa Abbas Ahmed

Lecturer of Microbiology, Faculty of Applied Medical Science, October 6 University

> Faculty of Science, Ain Shams University

> > 2018

Dedication

I would like to dedicate this thesis to my **Father**, **Mother & Sisters** without whom none of my success would be possible.

They always encourage, support & stand by my side all the time & never left me alone.

All my love & gratitude are for them, my Family.

Acknowledgement

All praise & thanks are to Allah. He never left me alone & always pushed me forward to the right destination for achieving my goal of this thesis.

I would like to greatly thank **Prof. Dr. Y.M. Hassan**, Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University for her kind supervision, valuable advice, assistance & revision to follow up the progress of this work with her continuous guidance.

I'm so grateful & thankful to **Prof. Dr. A.Y. El-Naggar**, Professor of Analytical and Petroleum Chemistry, Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI) for his suggesting the problem, kind supervision, guidance & valuable advice. He offered me a lot of his experience & never been late in answering my questions.

My deepest gratitude, thankful & appreciation to **Dr. Nashwa Abbas Ahmed**, Lecturer of Microbiology, Faculty of Applied Medical Science, October 6 University for her kind supervision, valuable advice, unlimited assistance & encouragement. She offered me much of her time to progress in my work with her continuous guidance.

All my thanks to **Prof. Dr. Yasser Mustafa** vice director of EPRI and head of Central lab., **Dr. Mohamed Ebaid** assistant professor of analysis and evaluation department/EPRI, **Dr. Ahmed Abdel Wahab**, assistant professor of analysis and evaluation department/EPRI, and also, all members in GC lab For their aid in chromatographic analysis.

I also want to deeply thank **Dr Amr Fouda**, Lecturer of Biotechnology, Faculty of Science, Al Azhar University (Boys) for his aid & support.

Thanks are given to **Dr. Ayman Farrag Ahmed**, director of Al Azhar Center for Fermentation Biotechnology & Applied Microbiology (Ferm – Bam Center), Al Azhar University (Boys), **Dr Mahmoud Ismaeil**, Researcher of Microbiology & Biotechnology/Al Azhar Ferm – Bam Center & all the staff members for the offered facilities and materials that made this work possible. Thanks are also given to the staff members of Chemical Warfare central labs/water analysis department.

Special thanks to all my family & friends for their continuous encouragement & support to accomplish this work.

Contents

Introduction
Aim of work
Review of literature
1-Polynuclear aromatic hydrocarbons (PAHs)
2- Hazards of PAHs
3- Treatment of pollution
3-1- Mechanical treatment
3-2- Thermal treatment
3-3- Physico-Chemical treatment
3-4- Biological treatment
4- Interaction of microorganisms with the contaminated
compounds
4-1- Bacteria
4-2- Fungi
4-3- Actinomycetes
5- Degradation of Hydrocarbons
Mechanism of Degradation of Aromatic Hydrocarbons
5-1- Aerobic degradation of aromatic compounds
i. Activation of the Ring
ii. Ring Cleavage
Examples
i.Degradation of Monoaromatics (BTEX)
ii.Degradation of polynuclear aromatic hydrocarbons
(PAHs)
5-2- Anaerobic degradation of aromatic compounds
6- Factors affecting microbial degradation
6-1-PH
6-2- Temperature
6-3- Oxygen Level
6-4- Nutrients
6-5- Salinity and Pressure
6-6- Light
6-7-Types of contaminants
6-8- Bioavailability of contaminants
6-9- Concentration of contaminants
6-10- Toxicity
7- Chromatographic Analysis

	Iture media
	ostrates used as carbon sources
	Sample collection
	Isolation of hydrocarbon degrading microbial isolates
	Purification of hydrocarbon degrading microbial isolates
	Selection of the most potent hydrocarbon degrading microbia
	solates
	- Preliminary Selection on individual carbon sources
	i- Secondary Selection on a mixture of three carbon sources.
1	ii- Selection of the most potent bacterial and fungal microbia isolates on a mixture of three carbon sources
5- (Quantitative assessment of the potentiality of aromatic HC
C	legradation of the most potent bacterial and fungal isolates
i	- Preparation of samples
	i- Capillary gas chromatographic analysis (CGC-MS)
	Identification of the most potent hydrocarbon degrading
	microbial isolates
i	- Bacteria
	i- fungi
	Optimization of parameters controlling the degradation
-	potentiality of the most potent microbial isolates
i	- Determination of the optimum concentration of the mixture
	of c-sources
	i- Determination of the optimum pH value
	ii- Determination of the optimum incubation temperature
	v- Determination of the optimum speed of agitation
	Application of the two most potent microbial isolates on
	BTEX and Crude Oil
	- Application on BTEX mixture
I	I- Application on Crude Oil
Resu	ılts And Discussion
Sec	etion (A):
I	- Collection of Samples
	I- Isolation and purification of the aromatic HC degrading
	microbial isolates
I	II- Selection of the most potent microbial isolates using
	xylene, naphthalene and anthracene individually and in
	combination as sole carbon and energy sources

1- Bacteria	
2- Actinomycetes	
3- Fungi	
IV- Quantitative assessment of the most potent microbial	
isolates using CGC-MS analysis and a mixture of xylen	e,
naphthalene and anthracene as a sole carbon source	
1- Bacteria	
2- Fungi	
Section (B):	
I- Identification of the most potent aromatic HC degrading	3
bacterial isolate	-
II- Identification of the most potent aromatic HC degradin	
fungal isolate	_
Section (C):	
I- Determination of the optimum concentration of the	
mixture of the three c-sources	• • • • •
1- In case of the most potent bacterial isolate "Bacillus	
licheniformis strain DSM 13"	• • •
2- In case of the most potent fungal isolate "Aspergillus	3
Flavus"	
II- Determination of the optimum pH value	• • • • •
1- In case of the most potent bacterial isolate "Bacillus	
licheniformis strain DSM 13"	• • •
2- In case of the most potent fungal isolate "Aspergillus	5
Flavus"	
III- Determination of the optimum incubation	
temperature	• • • • •
1- In case of t he most potent bacterial isolate " <i>Bacillus</i>	
licheniformis strain DSM 13"	• • •
2- In case of the most potent fungal isolate "Aspergillus	7
Flavus"	• • • •
IV- Determination of the optimum Agitation Speed	
(RPM)	••••
1- In case of t he most potent bacterial isolate " <i>Bacillus</i>	
licheniformis strain DSM 13"	
2- In case of the most potent fungal isolate "Aspergillus	
Flavus"	• • • •
Section (D):	
I- BTEX mixture	••••
1- In case of t he most potent bacterial isolate " <i>Bacillus</i>	
licheniformis strain DSM 13"	

a- Growth measurements
b- GC- MS Analysis
2- In case of the most potent fungal isolate "Aspergillus
Flavus"
a- Growth measurements
b- GC- MS Analysis
II- Crude Oil
1- In case of the most potent bacterial isolate "Bacillus
licheniformis strain DSM 13"
a- Growth measurements
b- HPLC- Analysis
2- In case of the most potent fungal isolate "Aspergillus
Flavus"
a- Growth measurements
b- HPLC-Analysis
Conclusion
Summary
References
Arabic Summary

List of tables

Table no.	Title	Page
1	Bioremediation treatment technologies	14
2	Enzymes involved in biodegradation of petroleum HCs	21
3	Microorganisms having degradation potential for benzene, toluene, ethylbenzene and xylenes (BTEX)	24
4	Microorganisms having degradation potential for the PAHs, naphthalene and anthracene	34
5	The standard methods used for the chemical analysis of oil sample	49
6	Chemical analysis of the two oil samples	64
7	Assessment the No. of aromatic HC degrading microbes isolated from two oil samples and two crude oil polluted water samples	65
8	Assessment of the growth of aromatic HC degrading bacterial isolates on the individual carbon sources: xylene, naphthalene and anthracene	66
9	Assessment of the growth of the most potent bacterial isolates on a mixture of the three carbon sources; xylene, naphthalene and anthracene	68
10	Assessment of the bacterial growth and selection of the most potent bacterial isolate on the mixture of the three c-sources	69
11	Assessment of the growth of aromatic HC degrading actinomycetes isolates on the individual carbon sources; xylene, naphthalene and anthracene	70
12	Assessment of the growth of actinomycetes on the mixture of the three c-sources	71
13	Assessment of the growth of aromatic HC degrading fungal isolates on the individual carbon sources: xylene, naphthalene and anthracene	72
14	Assessment of the growth of the most potent fungal isolates on a mixture of the three carbon Sources; xylene, naphthalene and anthracene	73
15	Assessment of fungal growth and selection of the most potent fungal isolate on the mixture of the three c-sources	74
16	Assessment of biodegradation potentiality of the most potent bacterial isolate (BN24) using a mixture of xylene, naphthalene and anthracene as a carbon and energy source	80

17	Assessment of biodegradation potentiality of the most potent fungal isolate (FX8) using a mixture of xylene, naphthalene and anthracene as a carbon and energy source	83
18	Gene bank accession numbers along with the alignments of sequences obtained with reported 16S rRNA gene sequences in the gene bank and the highest similarity with different <i>Bacillus species</i> (13 strains)	86
19	Effect of different mixture concentrations on the growth of <i>Bacillus licheniformis</i> strain DSM 13	90
20	Effect of different mixture concentrations on the growth of <i>Aspergillus Flavus</i>	93
21	Assessment the effect of different _P H values on the growth of <i>Bacillus licheniformis</i> strain DSM 13	94
22	Assessment the effect of different _P H values on the growth of Aspergillus Flavus	96
23	The effect of different incubation temperatures on the growth of <i>Bacillus licheniformis</i> strain DSM 13.	98
24	Effect of different incubation temperature values on the growth of <i>Aspergillus flavus</i>	100
25	Effect of different agitation speeds (RPM) on the growth of <i>Bacillus licheniformis strain DSM 13</i>	102
26	Effect of different agitation speeds (RPM) on the growth of the most potent fungal isolate <i>Aspergillus flavus</i>	104
27	Comparison between the parameters required for the growth of the most potent bacterial and fungal isolates	106
28	Assessment of the growth of <i>Bacillus licheniformis strain DSM 13</i> using different BTEX concentrations	108
29	Assessment of BTEX biodegradation using the most potent bacterial isolate, <i>Bacillus licheniformis</i> strain DSM 13	112
30	Assessment the growth (dry weight) of <i>Aspergillus flavus</i> using different BTEX concentrations	113
31	Assessment of BTEX biodegradation using the most potent fungal isolate, <i>Aspergillus flavus</i>	117
32	Assessment of BTEX biodegradation using the most potent fungal isolate, <i>Aspergillus flavus</i>	120
33	HPLC-Analysis of the 16 PAHs biodegradation using <i>Bacillus licheniformis strain DSM 13</i> after 48 hrs. and 4 days of incubation	124
34	Assessment the growth of <i>Aspergillus flavus</i> using different crude oil concentrations	127
35	HPLC-Analysis of the 16 PAHs biodegradation using Aspergillus	131

	flavus after 24 hrs. and 4 days incubation	
36	Comparison between the biodegradation potentialities of the two most potent bacterial and fungal isolates using BTEX mixture and crude oil as sole carbon and energy sources	134

List of figures

Figure no.	Title	Page
1	Structure of the 16 PAHs enlisted as priority pollutants by US EPA	8
2	Chemical structures, physical and toxicological characteristics of PAHs	9
3	Schematic diagram illustrating soil washing process	11
4	Schematic diagram illustrating air sparging method	12
5	General pathway for monoaromatic HC degradation	25
6	Pathways for microbial catabolism of PAHs	26
7	Proposed catabolic pathways of naphthalene by bacteria	29
8 a	Proposed catabolic pathways of anthracene by <i>Mycobacterium</i> sp. Strain PYR-1	32
8 b	Proposed pathway for anthracene metabolism by <i>Rhodococcus sp.</i>	33
9	Fungal catalysis reaction of PAHs by the fungal (LiP), (MnP) and laccase	37
10	Anaerobic degradation of aromatic compounds	38
11	Catabolism of naphthalene, methylnaphthalene, and tetralin by anaerobic bacteria	39
12	Calibration curve of xylene representing an example of monoaromatic HCs	76
13	Calibration curve of naphthalene representing an example of diaromatic HCs	77
14	Calibration curve of anthracene representing an example of PAHs	78
15	Chromatogram of control sample (a) and bacterial sample (BN24) (b)	79
16	The biodegradation potentiality of the most potent bacterial isolate (BN24) using a mixture of xylene, naphthalene and anthracene	80
17	Chromatogram of control sample (a) and fungal sample (FX8) (b)	82
18	The biodegradation potentiality of the most potent fungal isolate (FX8) using a mixture of xylene, naphthalene and	83

	anthracene	
19	Evolutionary relationships of <i>Bacillus licheniformis strain DSM 13</i> with existing microbes	87
20	The effect of different mixture concentrations on the growth of <i>Bacillus licheniformis</i> strain DSM 13	91
21	The effect of different mixture concentrations on the growth of <i>Aspergillus Flavus</i>	93
22	The effect of different pH values on the growth of <i>Bacillus licheniformis</i> strain DSM 13	95
23	The effect of different PH values on the growth of Aspergillus Flavus	97
24	The effect of different incubation temperatures on the growth of <i>Bacillus licheniformis</i> strain DSM 13	99
25	The effect of different incubation temperature values on the growth of <i>Aspergillus flavus</i>	100
26	Effect of different agitation speeds on the growth of the most potent bacterial isolate, <i>Bacillus licheniformis strain DSM</i> 13	103
27	Effect of different agitation speeds on the growth of Aspergillus flavus	104
28	Assessment the effect of different BTEX concentrations on the growth (OD_{600}) of <i>Bacillus licheniformis strain DSM 13</i>	109
29	GC- MS analysis of BTEX biodegradation in both Control sample (a) and Bacterial sample of <i>Bacillus licheniformis strain DSM 13</i> (b)	111
30	Assessment of BTEX biodegradation in both the control and the bacterial samples using <i>Bacillus licheniformis strain DSM 13</i>	112
31	Effect of different BTEX concentrations on the growth of the most potent fungal isolate, <i>Aspergillus flavus</i>	114
32	GC-Analysis of BTEX biodegradation in both the control sample (a) and fungal sample of <i>Aspergillus flavus</i> (b)	116
33	Assessment of BTEX biodegradation using the most potent fungal isolate, <i>Aspergillus flavus</i>	117
34	Effect of different crude oil concentrations on the growth of the most potent bacterial isolate, <i>Bacillus licheniformis</i> strain DSM 13	121
35	HPLC-Analysis of the 16 PAHs biodegradation in case of control sample (a) and the most potent bacterial isolate after incubation for 48 hrs. (b) and 4 days (c)	122-123