

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

Impact of Detached Breakwaters Design Parameters on Beach Morphology Using Numerical Modeling

A Thesis

Submitted in Partial Fulfillment of the Requirement for the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

Submitted By

Eng. Raghda Saed Sayed Ali

B.Sc. in Civil Engineering - Water and Hydraulic Structures-2010 Ain Shams University - Faculty of Engineering

Supervised by

Prof. Dr. Abd El Mohsen El Mongy El Mongy

Professor of Coastal and Harbor Engineering Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Prof. Dr. Yasser El Sayed Ibrahim Mostafa

Professor of Harbor Engineering and Marine Structures Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Dr. Hesham Nazmy Farres

Lecturer at Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Cairo – Egypt 2018

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

EXAMINERS COMMITTEE

Name: Eng. Raghda Saed Sayed Ali.

Thesis: Impact of Detached Breakwaters Design Parameters on Beach

Morphology Using Numerical Modeling.

Degree: Master of Science in Civil Engineering.

Name and Affiliation	Signature
Prof.Dr. Gamal Helmy Elsaeed.	
Professor of Harbor and Coastal Engineering	
Civil Engineering Department	
Faculty of Engineering Banha University	
Prof. Dr. Sonia Yossef El-serafy.	
Professor of Harbor and Coastal Engineering	
Irrigation and Hydraulics Department	
Faculty of Engineering Ain-Shams University	
Prof. Dr. Abd El Mohsen El Mongy El Mongy.	
Professor of Harbor and Coastal Engineering	
Irrigation and Hydraulics Department	
Faculty of Engineering Ain-Shams University	
Prof. Dr. Yasser El Sayed Ibrahim Mostafa.	
Professor of Harbor Engineering and Marine Structures	
Irrigation and Hydraulics Department	
Faculty of Engineering Ain-Shams University	

Date: / /2018

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

SUPERVISOR COMMITTEE

Name: Eng. Raghda Saed Sayed Ali.

Thesis: Impact of Detached Breakwaters Design Parameters on Beach

Morphology Using Numerical Modeling.

Degree: Master of Science in Civil Engineering.

Name and Affiliation	Signature
Prof. Dr. Abd El Mohsen El Mongy El Mongy	
Professor of Harbor and Coastal Engineering	
Irrigation and Hydraulics Department	
Faculty of Engineering Ain-Shams University	
Prof. Dr. Yasser El Sayed Ibrahim Mostafa	
Professor of Harbor Engineering and Marine Structures	
Irrigation and Hydraulics Department	
Faculty of Engineering Ain-Shams University	
Dr. Hesham Nazmy Farres	
Lecturer at Irrigation and Hydraulics Department	
Faculty of Engineering Ain-Shams University	
•	

Research Date: / / 2018

Postgraduate Studies

Authorization Stamp: The thesis is authorized at: / / 2018

Collage Board Approval / / 2018

University Board Approval / / 2018

Curriculum Vitae

Name Raghda Saed Sayed Ali

Date of Birth 27, April, 1988

Place of Birth Cairo, Egypt

Nationality Egyptian

University B.Sc. in Civil Engineering, Faculty of Engineering,

degree Ain Shams University

Current Job Engineer at Central Planning and Management Sector

Ministry of Water Resources and Irrigation

Statement

This thesis is submitted to Ain Shams University for the degree of M.Sc. in

Civil Engineering.

The work included in this thesis was carried out by the author at the

Department of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams

University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at

any other University or Institution.

Name: Raghda Saed Sayed Ali

Signature:

Date:

/ / 2018

Acknowledgment

First and foremost, Thanks to GOD

I wish to express my deepest gratitude and appreciation to **Professor Dr. Abd El Mohsen El Mongy**, Professor of Coastal and Harbor engineering, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University for his kind supervision, fruitful comments and valuable advice.

My grateful appreciation is also extended to **Professor Dr. Yasser El Sayed Mostafa**, Professor of Harbor engineering and Marine Structures, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University for his patience, help, guidance, useful suggestions, dedication and encouragement throughout this work till its completion which is gratefully acknowledged and sincerely appreciated.

And many thanks to **Dr. Hesham Nazmy**, Lecture at Irrigation and Hydraulics Department, Faculty of Engineering Ain Shams University for his guidance, suggestions till completion of this work.

Also, I'd like to thank **Dr. Ahmed Balah**, Lecturer at Irrigation and Hydraulics Department, Faculty of Engineering Ain-Shams University for his information, which have the great rule in this study.

Last but not least, I'd like to thank my Husband, my son, my daughter and family for their prayers, patience, encouragement and support throughout all the difficult and hard times.

Abstract of M.Sc. Thesis

Coastal engineering is the branch of civil engineering related to problems arising from constructions along or near the coast, as well as the development of the coast itself.

Erosion and sedimentation are natural processes. The most noticeable aspect created by erosion is the loss of waterfront property. Waterfront property values are extremely high, which drives many owners and governments to spend considerable time and money protecting their shoreline from erosion.

There is a vital need to understand the characteristics and physical behavior of the coastal environment, as well as to apply engineering principles and concepts to develop opportunities and solve problems in this environment.

Detached breakwaters are considered one of the solutions that can be used as a protection measure. However, any change in the shoreline has an adverse impact. Several factors affect the decision of coastal engineers to select the suitable configuration of detached breakwaters to counteract these problems.

An intensive parametric study using different wave characteristics has been conducted to study the impact of different parameters of detached breakwaters on shoreline changes and beach morphology to guide designers in selecting the appropriate alternative. This was accomplished by using a hydrodynamic model (MIKE 21 software program) for simulating shoreline changes at three different study areas. The study areas were East El Burullus, West El Burullus and Marina El Alamein which all are located in the northern coast of Egypt. The thesis examined the effect of different parameters on shoreline changes due to the presence of detached breakwaters

parallel to the shoreline. Conclusions have been drawn to guide the . practitioners how to effectively design the detached breakwater system

Keywords: Coastal, Detached breakwater, shoreline, MIKE

Summary of M.Sc. Thesis

Coastal Engineering is a combination of practical applications with modern technological and scientific approaches through modelling and observations. Also, it is the branch of civil engineering concerning with processes ongoing at the shoreline and construction within the coastal zone and attempts to solve some coastal zone problems.

A basic understanding is required of the characteristics of the coastal environment to apply engineering principles to solve coastal zone problems such as beach erosion.

A number of systems are used to prevent damage of beach that caused by waves. The most common shore protection structures are breakwaters, sea walls, revetments and groins. These are all structures built out of concrete, sand and stone to help dissipate the force of waves and control erosion.

Detached breakwaters can be used as a solution for this problem. Coastal engineers have to select many parameters to effectively design a suitable detached breakwater system for shore protection.

A numerical study at three areas (East El Burullus, West El Burullus and Marina El Alamien) using a hydrodynamic model (MIKE 21 software program) was carried out to study the effect of different parameters on shoreline changes due to detached breakwaters systems. These parameters included incident wave angle, wave height, wave period, time, gap between detached breakwaters, distance between shoreline and the detached breakwaters and number of detached breakwaters.

Organization and Description of the Thesis

The thesis comprised the following chapters:

Chapter one presents a brief introduction of the subject and brief description of the thesis.

Chapter two presents a review of basic hydrodynamic processes, littoral sediment transport, and coastal morphology. It also presents various types of shore protection structures and these characteristics especially detached breakwater.

Chapter three presents a detailed description of the numerical model (MIKE 21) and its components (LITCONVE, LINTABLE and LITLINE).

Chapter Four presents a case study which is located in northern coast of Egypt (East El Burullus). Detached breakwaters systems with different parameters were selected to examine the shoreline changes.

Chapter Five presents a second case study which is located in northern coast of Egypt (West El Burullus) and presents the effect of different parameters on the shoreline changes at this study area.

Chapter Six resents a third case study which is located in Marina El Amlamein (Northern Coast o Egypt).

Chapter Seven presents general conclusions and further recommendations are presented. The study introduced the effect of different parameter of detached breakwater on shoreline changes.

Table of Contents

Table of Contents	I
List of Tables	V
List of Figures	VI
List of Symbols	XI
1 INTRODUCTION	1
1.1 Coastal Problems	1
1.2 Problem Definition	2
1.3 Thesis Contents	3
2 LITERATURE REVIEW	4
2.1 Coastal Hydrodynamic Processes	4
2.1.1Wind	4
2.1.2 Wave	5
2.1.3 Current	6
2.1.4 Tides	7
2.1.5 Beach Zones	8
2.2 Littoral Sediment Transport	9
2.2.1 Modes of sediment transport	9
2.2.2 Longshore sediment transport	10
2.2.3 Cross-shore sediment transport	11
2.3 Coastal Morphology	11
2.3.1 Types of shoreline configuration	12
2.4 Coastal Problems	12
2.4.1 Factors causing erosion of the coastline	13
2.4.2 Examples on Coastal Problems Worldwide	13
2.4.3 Examples Coastal Problems in Egypt (North Coast)	15
2.5 Shore Protection Structures	16
2.5.1 Shore-Normal Structures	17

	2.5.2 Shore-parallel Structures	18
	2.6 Examples of Detached Breakwater Structures	21
	2.6.1 Different configurations of detached breakwater	21
	2.6.2 Ras-Eibar coastline, Egypt	23
3	MORPHODYNAMICS MODELING	34
	3.1 Introduction	34
	3.2 Classification of coastal morphological change models	35
	3.2.1 One-line models (1D models)	35
	3.2.2 Concept and main assumptions of one-dimension models	35
	3.2.3 Limitations of one-dimension models	37
	3.2.4 Description of Littoral Transport and Coastline Kinetics mode (LITPACK)	
	3.3 The Coastline Evolution module, LITLINE	39
	3.3.1 LITLINE basic equations	40
	3.3.2 LITLINE inputs and outputs	42
	3.3.3 LITPACK Utility Programs	43
	3.4 Modeling of Shoreline evolution using LITLINE	
	3.5 LITLINE sensitivity analysis	45
	3.6 LITLINE setup for Study areas	46
	3.6.1 LINTABL Setup	46
	3.6.2 LITLINE setup	47
4	EAST (NEW EL-BURULLUS FISHING PORT) STUDY AREA	56
	4.1 Introduction	56
	4.2 Model Calibration	56
	4.3 Assumed Configuration	57
	4.4 Parametric Study	57
	4.4.1 Effect of incident wave angle on shoreline changes	57
	4.4.2 Effect of wave height on shoreline changes	59
	4.4.3 Effect of wave period on shoreline changes	61

4.4.4 Effect of time on shoreline changes	61
4.4.5 Effect of gap between breakwaters on shoreline changes	62
4.4.6 Effect of the breakwater offshore distance on shoreline chan	_
4.4.7 Effect of breakwater length	64
4.4.8 Effect of changing the number of breakwaters	65
5 WEST (NEW EL-BURULLUS FISHING PORT) STUDY AREA	85
5.1 Introduction	85
5.2 Model Calibration	85
5.3 Assumed Configuration	86
5.4 Parametric Study	86
5.4.1 Effect of incident wave angle on shoreline changes	86
5.4.2 Effect of wave height on shoreline changes	88
5.4.3 Effect of wave period on shoreline changes	89
5.4.4 Effect of time on shoreline changes	90
5.4.5 Effect of gap between breakwaters on shoreline changes	91
5.4.6 Effect of the breakwater offshore distance on shoreline chan	ges
	92
5.4.7 Effect of breakwater length	93
5.4.8 Effect of changing the number of breakwaters	94
6 MARINA EL-ALAMEIN STUDY AREA	115
6.1 Introduction	115
6.2 Model Calibration	115
6.3 Assumed Configuration	116
6.4 Parametric Study	116
6.4.1 Effect of incident wave angle on shoreline changes	116
6.4.2 Effect of wave height on shoreline changes	118
6.4.3 Effect of wave period on shoreline changes	119
	120

6.4.5 Effect of gap between breakwaters on shoreline changes 121
6.4.6 Effect of the breakwater offshore distance on shoreline changes
122
6.4.7 Effect of breakwater length
6.4.8 Effect of changing the number of breakwaters
6.5 Comparison with literature 124
7 CONCLUSIONS AND RECOMMENDATIONS150
7.1 The parameters covered in the study were:
7.1.1 Effect of incident wave angle
7.1.2 Effect of wave height
7.1.3 Effect of wave period
7.1.4 Effect of time
7.1.5 Effect of gap between breakwaters
7.1.6 Effect of breakwater offshore distance
7.1.7 Effect of breakwater length
7.1.8 Effect of number of breakwaters
7.2 Recommendations for future work
REFERENCES153

List of Tables

Γable 2-1 Classification of Wave According to Wave Period, t	the Disturbing
and Restoring Forces	25
Table 3-1 Study areas Coordinates (UTM, Zone36)	48
Table 3-2 Base Line Characteristics	48
Table 6-1 Comparison with Literature	126