DESIGN, FABRICATION AND OPTIMIZATION OF THE PERFORMANCE OF SILICON SOLAR CELL USING MULTILAYERS OF POROUS SILICON

Submitted By

Hager Abd El-Hakim Mohamed Nawar

B.Sc. of Science (Physics), Faculty of Science, Ain Shams
University, 2008

M.SC. in Environmental Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2014

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Ph.D. Degree
In
Environmental Science

Department of Environmental Basic Sciences Institute of Environmental Studies and Research AinShamsUniversity

APPROVAL SHEET

DESIGN, FABRICATION AND OPTIMIZATION OF THE PERFORMANCE OF SILICON SOLAR CELL USING MULTILAYERS OF POROUS SILICON

Submitted By

Hager Abd El-Hakim Mohamed Nawar

B.Sc. of Science (Physics), Faculty of Science, Ain Shams University, 2008M.SC. in Environmental Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2014

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Ph.D. Degree

In

Environmental Science
Department of Environmental Basic Science

This thesis Towards a Doctor of Philosophy Degree in Environmental Science

Has been Approved by:

Name Signature

1-Prof. Dr. Hiyam Abdel Aziz Al-Zahid

Prof. of Solid State Physics and Vice Dean of Faculty of Women for Education and Student Affairs Ain Shams University

2-Prof. Dr. Gad Mohamed Al-Qady

Prof. of Geophysics National Institute of Astrophysics and Geophysic

3- Prof. Dr. Mahmoud Mohammed M. Al-Nahhas

Prof. of Soild State Physics, Department of Physics Faculty of Education, Ain Shams University

4- Prof. Dr. Gamal Mahmoud Ali Youssef

Prof. of Soild State Physics, Department of Physics Faculty of Science, Ain Shams University

5- Prof. Dr. Mohammed Gharib Al-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Science - Institute of Environemntal Studies and Research Ain Shams University

DESIGN, FABRICATION AND OPTIMIZATION OF THE PERFORMANCE OF SILICON SOLAR CELL USING MULTILAYERS OF POROUS SILICON

Submitted By

Hager Abd El-Hakim Mohamed Nawar

 B.Sc. of Science (Physics), Faculty of Science, Ain Shams University, 2008
 M.SC. in Environmental Basic Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2014

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Ph.D. Degree
In
Environmental Science

Department of Environmental Basic Science

Under The Supervision of:

1- Prof. Dr. Mahmoud Mohammed M. Al-Nahass

Prof. of Solid State Physics, Department of Physics, Faculty of Education,
Ain Shams University

2- Prof. Dr. Gamal Mahmoud Ali Youssef

Prof. of Solid State Physics, Department of Physics, Faculty of Science, Ain Shams University

3- Prof. Dr. Mohammed Ghareeb Al-Malky

Prof. of Environmental Geophysics, Department of Basic Science, Institute of Environmental Studies and Research, Ain Shams University

Acknowledgement

All thanks are to **Allah** for blessingall of us and who has appreciated my goog and Easy by His kindness to this work until it has reached its end, as a part of his princely help throughout our life.

Foremostly I wish to thank my advisor, **Prof. Dr. Mahmoud Mohammed M. Al-Nahass**, Prof. of Solid State Physics, Department of
Physics, Faculty of Education, Ain Shams University, it has been an
amazing experience for working under his supervision and I thank
whole heartedly, for his tremendous academic support through my
PhD.

Great mention goes to, my **Prof. Dr. Gamal Mahmoud Ali Youssef,**Prof. of Solid State Physics, Department of Physics, Faculty of
Science, Ain Shams University, he has been supportive since the days I
began working Ever since, He helped me come up with the thesis topic.
And during the most difficult times when writing this thesis, he gave me
the moral support and the freedom I needed to move on.

I am also hugely appreciative to my **Prof. Dr. Mohammed**Ghareeb El-Malky, Prof. of Environmental Geophysics, Department of
Basic Science, Institute of Environmental Studies and Research, Ain
University, for sharing his expertise so willingly, encouraging me, and
affording me with an appreciated advice.

I am particularly indebted to for **Prof. Dr. Hala Abd El-Hamid Kassem**, Head of Basic Science Department, Institute of Environmental
Studies and Research, Ain Shams University she has supported me over

Acknowledgement

almost the last years and till now, not only academically but also emotionally through the rough road to finish my Ph.D.

Finally, but by no means least, thanks go to my father, mother, sisters and brothers, they have cherished with me every great moment and supported me whenever I needed it. Also, my deep thanks for my husband for his support, patience and valuable advice, and I never forget my children, too they are the most important people in my world and I dedicate this thesis to them.

ABSTRACT

Porous silicon layer (PSL) has emerged in potential solar cell applications because of its high surface area to volume ratio, convenient surface chemistry and large energy band gap ≈1.9 eV.PSL has been prepared from n⁺p/Si junction using electrochemical etching process (ECE) with three different current densities 25, 50 and 75 mA/cm² on the front and back side and 50 mA/cm² for both sides of the cell. The influence of varying current density on morphological, optical, chemical and electrical properties of PS has been inspected. SEM micrographs showed that the surface porosity of 90% on the front side, in contrast the etched back surface seemed in harmonic shape with identical pore size and porosity of 98%.XRD pattern of PSL formed on the front n-surface seems to be different from that formed on the back p-surface. This results from the dissimilar in surface morphology and the average nano crystallite sizes of samples. The PL spectrum peak ranged from 640 to 670nm. A reduction in light reflection of PSL samples by increasing in current density to 50 mA/cm² compared to un treated textured Si surface. The obtained FTIR spectra of the samples with a relatively high PL intensity exhibit a developed broad transmission bands in the range of 600 cm⁻¹ to 4000 cm⁻¹ this relatively attributed to the presence of both hydrogen and oxygen complexes. Solar cell conversion efficiency based on PSL formed on both sides shows a remarkable increase in its efficiency compared to that based on one side of the cell.

From these results it reaches conclusion that solar cell based on PSL formed on both sides provide the best cell circuit parameters, offers stability, lower costs, and it is being recommended for industrial fabrication.

Table of Contents ABSTRACT..... LIST OF TABLES.....VII LIST OF FIGURE.....X LIST OF ABBREVIATIONS.....XIII CHAPTER 1 INTRODUCTION AND REVIEW OF LITERATU......3 1.2. Aim of the work 4 CHAPTER 2. THEORETICAL BACKGROUND......36

2.1.2.Porous silicon Formation Mechanisms:	38
2.1.3. Anodization Parameters	39
2.1.3.1. Current density	40
2.1.3.2. Etching time	40
2.1.3.3. Electrolyte	41
2.1.3.4. Silicon Substrate	42
2.1.3.5. Illumination	43
2.1.4. Morphological properties	44
2.1.4.1. pore type	45
2.1.4.2. pore shape	46
2.1.4.3. Pore size	47
2.1.4.4. surface area	47
2.1.4.5. porosity and layer thickness	48
2.1.5. Structure properties	50
2.1.5.1. X-ray diffraction	50
2.1.6. Optical properties	51
2.1.6.1. Luminescent Properties of PS	51
2.1.7. Chemical properties	52
2.1.8. Electrical properties	53
2.1.8.2. photoconductivity response	55
2. 1.9. Applications of PS	56
2.1.9.1. Optical Applications	56
2.1.9.2. Biological Applications	57
2.1.9.2.1 Nanoparticles	57
2.1.9.3. Sensors	58
2.1.9.4. Templates	58
2.2 silicon solar cell	60

2.2	.1. introduction	. 60
2.2	.2. Solar cell principals	.60
2.2	.3. Photovoltaic Properties	.61
2.2	.4. Optical properties	. 64
	2.2.4.1. Band gap	
2	2.2.4.2. Absorption coefficient	. 65
2	2.2.4.3 Refractive index	. 65
2	2.2.4.4. Carrier concentration	. 65
2.2	.5 Types of solar cells	.66
2	2.2.5.1. First-generation solar cells	.66
2	2.2.4.2. Second generation solar cells	.66
2	2.2.4.3. Third generation solar cells	.66
2	2.11. PS QD in solar cell application	.67
	= =	
	PTER 3 MATERIALS AND METHODS	72
СНА	• • •	
C HA 3.1	PTER 3 MATERIALS AND METHODS	.72
3.1	PTER 3 MATERIALS AND METHODS	72
3.1 3	PTER 3 MATERIALS AND METHODS	72 72 72
3.1 3 3 3	PTER 3 MATERIALS AND METHODS. Experimental setup	72 72 72
3.1 3 3 3 3	PTER 3 MATERIALS AND METHODS. Experimental setup 3.1.1. n ⁺ p junction fabrication 1.2 Sample purification 3.1.3. porous Si formation	72 72 72 73
3.1 3 3 3 3 3 3.2	PTER 3 MATERIALS AND METHODS. Experimental setup 3.1.1. n ⁺ p junction fabrication 1.2 Sample purification 3.1.3. porous Si formation 3.1.4. Solar cell design	72 72 72 73 74
3.1 3 3 3 3 3.2 3.2	PTER 3 MATERIALS AND METHODS. Experimental setup 3.1.1. n ⁺ p junction fabrication 1.2 Sample purification 3.1.3. porous Si formation 3.1.4. Solar cell design Characterization Techniques	72 72 73 74 76
3.1 3 3 3 3.2 3.2	PTER 3 MATERIALS AND METHODS. Experimental setup 3.1.1. n ⁺ p junction fabrication 1.2 Sample purification 3.1.3. porous Si formation 3.1.4. Solar cell design Characterization Techniques 1. Morphological measurement	72 72 73 74 76
3.1 3 3 3 3.2 3.2 3.3	PTER 3 MATERIALS AND METHODS. Experimental setup	72 72 73 74 76 76
3.1 3 3 3 3.2 3.2 3.3 3.3	PTER 3 MATERIALS AND METHODS. Experimental setup 3.1.1. n ⁺ p junction fabrication 1.2 Sample purification 3.1.3. porous Si formation 3.1.4. Solar cell design Characterization Techniques 1. Morphological measurement 3.2.1.1. Scanning Electron Microscopy (SEM) technique structural properties measurement	72 72 73 74 76 76 77
3.1 3 3 3 3.2 3.2 3.3 3.3 3.4	PTER 3 MATERIALS AND METHODS. Experimental setup 3.1.1. n ⁺ p junction fabrication 1.2 Sample purification 3.1.3. porous Si formation 3.1.4. Solar cell design Characterization Techniques 1. Morphological measurement 3.2.1.1. Scanning Electron Microscopy (SEM) technique structural properties measurement 3.3.1.X-Ray diffraction technique	72 72 73 74 76 76 77 77

3.5. Chemical composition measurement
3.5.1 Fourier Transform Infrared (FTIR) Spectroscopy80
3.6. Electrical properties measurement
3.6.1. photovoltaic (J-V)characteristics investigation
CHAPTER 4. RSULTS AND DISCUSSION83
4.1. Morphological properties83
4.1.1. Scanning Electron Microscope
4.1.1.1. SEM of PSL formed on the front n-side (group I)83
4.1.1.2. Thickness, pore size and porosity of PSL formed on the front n-side (group I)
4.1.1.3. SEM of PSL formed on the back p-side (group II)90
4.1.1.4. Thickness, pore size and porosity of PSL formed on the back p-side
4.2. Structural properties of PSL
4.2.1. X-ray characteristics of PSL formed on the front n-side (group II
4.2.2. X-ray characteristics of PSL formed on the back p-side (group II)99
4.3. Photoluminescence of PSL
4.3. 1. Photoluminescence of PSL formed on the front n-side (groupI)
4.3.2. Photoluminescence of PSL formed on the back p-type (group II)
4.3.3. Reflectance of PSL formed on PSL formed on the front n-type side (group I)
4.3.4. Reflection of PSL formed on the back p-type (group II) 106
4.3.4.1. Refractive index calculation of PSL formed on front n and back p-type side:

References133
Summary127
Conclusions and Recommendations125
4.3. J-V characteristics of PSL formed on both sides (group III) 122
4.4.2 J-V characteristics of PSL formed on the back p-type side (group II)
4.4.1. J-V characteristics of PSL formed on the front n-type side (group I)
4.5. Electrical properties of solar cell based on PSL116
4.4.1. Fourier transform infrared FTIR analysis of PSL formed on the front n- and back p-side:
4.4. Chemical composition of PSLs
4.3.4.2. Optical energy band gap calculation of PSL formed on the front n-type and back p-type side

LIST OF TABLES

Table 2.1. IUPAC classification of pores size.	48
Table 2.2. PS as a Multidisciplinary Material.	60
Table 3.1. different preparation conditions and an	d samples
classification.	76
Table 4.1. Average pore diameter measured thickness & l	Porosity for
PSL prepared on the front n-side (samples Sr	11, Sn2 and
Sn3)	89
Table 4.2. Average pore diameter, measured thickness & I	Porosity for
PSL prepared on the back p-side (Sp1, Sp2 and	l Sp3)95
Table 4.3. average crystalline size and FWHM for: front	n-type side
and PSL samples Sn1, Sn2 and Sn3 prepare	d at 25, 50
&mA/cm ² 75	98
Table 4.4. average crystalline size and FWHM for: back	p-type side
without PSL and PSL samples Sp1, Sp2	2 and Sp3
prepared	100
Table 4.5. Intensity, FWHM and calculated Eg for: PSL sa	imples Sn1,
Sn2 and Sn3 prepared on the front n-side	102
Table 4.6. intensity, FWHM and calculated Eg for: PSL sa	imples Sp1,
Sp2 and Sp3 prepared on the back p-type side.	104
Table 4.7. Calculated refractive indices for PSL samples Sa	n1, Sn2 and
Sn3 using Ravindarie et al.; Herve & Vandamn	n, and Gosh
et al., and their corresponding dielectric constant	nt108
Table 4.8. Calculated refractive indices for PSL samples Sp	p1, Sp2 and
Sp3 using Ravindarie et al.; Herve & Vandamn	n, and Gosh
et al., and their corresponding dielectric constan	nt108

Table 4.9. Give comparison between the calculated band gap of the
samples by extrapolation the absorption edge onto the
energy axis using Eq. 4.9 and that extracted from PL
data111
Table 4.10. wavenumber position corresponding to the different
surface species associated with the porous silicon
surface112
Table 4.11. different solar cells parameters based on the PSL prepared
on the n-side compared with the solar cell without a
PSL118
Table 4.12: different solar cells parameters based on the PSL prepared
on the back p-side compared with the solar cell without a
PSL120
Table 4.13. Different solar cells parameters based on the PSL prepared
on both sides compared with that prepared on one side
PSL at etching current density of 50 mA/cm2123

LIST OF FIGURES

Figure 1.1. Illustrates the evolution of the growth of the PS during the
last 30 years Stages of development technologies and
theories describing PS Formation5
Figure 2.1. Direct and indirect band gap of semiconductor37
Figure 2.2. Schematic diagram of the PS anodization circuit38
Figure 2.3. Pore formation in PS
Figure 2.4. Schematic dissolution mechanism of Si in HF solution40
Figure 2.5.(a) The pore shape as a function of current density and (b):
Comparison of porosity values of layers formed on
heavily doped p-Si (100) and n-Si, as a function of forming
current density41
Figure 2.6.PS layer thickness as a function of etching time in HF
25%42
Figure 2.7. Porosity as a function of the P-Si (100) anodization time:
electrolyte – HF (10%) in isopropyl alcohol (IPA)43
Figure 2.8. Pore diameter of the PSi formed in 50% HF + ethanol (1:1)
as a function of doping concentration and current
density44
Figure 2.9. Dependence of etching degree of n-Si (111) on photon flux
at $\lambda = 633$ nm in (a) 48% and (b) 25% HF-H2O
solutions45
Figure 2.10. Possible morphologies of PSL46